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S U M M A R Y
Free pressure oscillations during pumping operations in boreholes may potentially constrain
hydraulic characteristics of the surrounding material. These damped oscillations occur when
flow rate is suddenly changed, and their period and decay rate depend on the hydraulic
properties of the entire hydraulic system: the porous medium, a section of the borehole, and/or
the injection line, depending on test set-up. There have been previous attempts to estimate
transmissivity values from free pressure oscillations that occurred during slug tests in open
boreholes. The analysis used did not account for viscous losses due to the fluid interacting
with the borehole wall. In contrast, dispersion relations of flow waves in a tight borehole (i.e.
a cylindrical hole in an impermeable medium) account for wall friction. We extend a previous
analytical treatment of flow waves by changing the boundary condition of the fluid velocity at
the borehole wall to include fluid exchange between borehole and porous medium. In addition,
we performed numerical modelling of waves propagating in boreholes with impermeable
and permeable walls to assess the effect of the assumptions behind the analytical solution.
We established how to distinguish cases in which the flow into the porous medium affects the
oscillation characteristics (suitable for a hydraulic analysis) from those in which the equipment
properties dominate the observations. Applying our methods to a range of field observations
yielded plausible hydraulic property values of the rock volume surrounding the borehole.

Key words: Fracture and flow; Permeability and porosity; Fourier analysis; Numerical mod-
elling.

1 I N T RO D U C T I O N

Several approaches employing observations of oscillatory pore-fluid pressure or flow-rate in boreholes have been followed to obtain hydraulic
properties of permeable media (e.g. Bredehoeft 1967; Hsieh et al. 1987; Rasmussen et al. 2003; Renner & Messar 2006; Audouin & Bodin
2007; Guiltinan & Becker 2015; Cheng & Renner 2018). Forced oscillations constitute externally controlled excitations of the hydraulic
system causing responses that are easily distinguished from background perturbations using time-to-frequency transformations (e.g. Renner
& Messar 2006). Forced oscillations, with a range of frequencies, might be induced by pumping operations (Rasmussen et al. 2003; Cheng &
Renner 2018) or natural processes, for example tides (e.g. Bredehoeft 1967; Hsieh et al. 1987), barometric loading (e.g. Lai et al. 2013) and
seasonal variations in precipitation (e.g. Saar & Manga 2003). Free oscillations, excited when an oscillator is displaced and quickly released
(e.g. Halliday et al. 2011), known for a long time in tubes (Frizell 1898), reveal the natural frequency of the system. Free pressure oscillations
were observed in boreholes after passing seismic waves (e.g. Bredehoeft et al. 1966) or after a rapid change in pumping parameters during
hydraulic well testing, for example a slug test (e.g. Audouin & Bodin 2007; Krauss 1974; van der Kamp 1976; Kipp 1985).

Free pressure oscillations have mostly been considered a side effect when occurring during pumping operations in boreholes. The few
previous models for these oscillations, aiming at the determination of hydraulic properties, interpreted the well-aquifer system as a classical
mass-spring oscillator, relating the coefficients of a second-order damped oscillation equation to the aquifer parameters. The fluid in the
borehole corresponds to the mass and the borehole storage capacity, providing a linear restoring force, to the spring. The storage capacity
differs for open (Krauss 1974; van der Kamp 1976; Mcelwee & Zenner 1998) and closed (Weidler 1996) boreholes. In open boreholes,
variations in water level and pressure are coupled and thus gravity acts as restoring force, while in closed wells, pressure variations cause
compression of the borehole fluid and elastic well deformation. In general, these mass-spring models do not account for damping due to the
interaction of the viscous fluid and the borehole wall, here addressed as wall friction, but solely consider damping due to fluid exchange
between borehole and porous medium. We address the latter mechanism as ‘leakage’ irrespective of the direction of flow, which may actually

C© The Author(s) 2022. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access
article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 1713

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/232/3/1713/6670791 by guest on 02 D

ecem
ber 2022

https://orcid.org/0000-0002-5983-4849
mailto:Victoria.JimenezMartinez@rub.de
https://creativecommons.org/licenses/by/4.0/
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Figure 1. Sketch representing different scenarios considered where flow waves can propagate, that is a borehole of length L (a) in a tight porous medium, (b)
in a homogeneous porous medium with permeability κ , in a tight porous medium intersected by a (c) vertical (axial) or (d) horizontal (radial) fracture with
aperture w and (e) in a tight porous medium with a permeable interval of length L leaky at the bottom.

reverse during an oscillation. One of the models that included losses due to wall friction was presented by Mcelwee & Zenner (1998), who
considered the viscous losses a nonlinear mechanism in the second-order damped oscillator. However, the leakage aspect of the solution does
not account for the storage coefficient of the porous medium since the fluid is treated as incompressible. Fischer (2016) used the model derived
by Weidler (1996) to determine transmissivity values from oscillations observed during pumping operations in the boreholes Horstberg and
Groß Buchholz, Germany. The derived transmissivity values exhibit a plausible order of magnitude but a counterintuitive decreasing trend
over the course of the performed hydraulic stimulations.

The mass-spring models neglect the local coupling of the fluid compression and the deformation of the borehole due to the pressure
variations. Viscous interaction between flowing fluids and the conduit walls was investigated for holes in rigid and deformable media (Bernabé
2009; Korneev 2010). Extensions of the basic concepts of solid–liquid interface waves, the so-called Stoneley waves (Chadwick & Borejko
1994), to tubes (boreholes) or slits (fractures) in impermeable or permeable solids (Tang & Cheng 1989; Tang 1990; Tang et al. 1991a)
address the coupling between solid deformation and fluid pressure variations, yet neglect viscous interaction.

We aim to analyse free pressure oscillations recorded during pumping operations in boreholes to constrain hydraulic properties. The
analysis of these oscillations requires the development of a theoretical framework that includes both loss mechanisms, leakage and wall
friction. Therefore, we extended the analytical end-member model (Bernabé 2009) that accounts only for ‘wall friction’’ by adding the effect
of leakage. We complement the analytical models by numerical modelling of flow waves in impermeable and permeable boreholes solving
the Navier-Stoke equations for compressible fluids. The goal of the numerical simulations is to quantify the effect of the two loss mechanisms
on frequency and damping coefficient of a free pressure oscillation, accounting for conditions not considered in the analytical solutions, for
example the finite length of the borehole, advective terms in the Navier–Stokes equations, and boreholes with permeable sections, only. Using
the established analytical solutions and considering the numerical results, we analyse the suitability of a range of field observations, gained
with vastly different set-ups, for an inversion of hydraulic parameters.

2 D I S P E R S I O N R E L AT I O N S F O R WAV E S I N B O R E H O L E S A N D F R A C T U R E S

We address mechanical waves in fluid-filled conduits, for example boreholes with radius R or fractures with aperture w, oscillating with
frequency f as fluid-flow waves. The approximate conventional analysis familiar for organ pipes suggests that the finite length of a cylindrical
hole, L , determines the frequency of standing fluid-flow waves as f0 = c0/(4L) and f̂ 0 = c0/(2L) when both ends are and just one end
is closed, respectively, where c0 = √

Kf/ρf denotes the acoustic velocity of the fluid with bulk modulus Kf and density ρf . A borehole in
an impermeable porous medium (Fig. 1a) may correspond to either endmember model, i.e. open or closed, depending on the conditions at
the wellhead. A permeable section (Fig. 1b) or an intersecting fracture (Figs 1c–e) may affect the oscillation frequency, as these hydraulic
elements compose ‘openings’ comparable to the holes in flutes (Forster 2010), but will inevitably lead to an increase in the damping coefficient
as a consequence of loss of fluid from the borehole. This ‘leakage’, by which fluid-flow waves excited in the borehole diffuse into fractures
or permeable media, is just one example for the coupling of fluid-flow waves with processes in the solid penetrated by the borehole. The flow
in axial direction of the borehole gives rise to viscous interaction at the solid wall, and the pressure variations in the fluid cause deformation
of the solid. Damping of free pressure oscillations may arise from any combination of leakage, wall friction, and solid deformation.

The dispersion relation, that is the frequency dependence of the wavenumber k(ω), where ω = 2π f denotes the angular frequency,
expresses the physics of the wave propagation. Several simplifications regarding the coupling between the deformation of the fluid and the
solid have been considered for the derivation of analytical dispersion relations of flow waves. For example, specific aspects of the coupling
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Free pressure oscillations in boreholes 1715

Figure 2. Damping coefficient as a function of (top) frequency and (bottom) pipe’s radius calculated from the dispersion relations for flow waves in rigid (1)
and elastic tight boreholes from Bernabé (2009) and Korneev (2010). The shear velocity used is 300 m s−1 to exaggerate the effect.

are excluded when the solid is assumed perfectly rigid. Solutions for coupled deformation of fluid and solid including viscous interaction at
the borehole wall exist (e.g. Bernabé 2009) but do not include leakage at the conduit walls.

2.1 Fluid-flow waves in tight boreholes

We address boreholes that do not exchange fluid with the penetrated medium –over the timescale relevant for the free-pressure oscillations-
as tight. Bernabé (2009) and Korneev (2010) analysed fluid-flow waves in such tight boreholes and specifically presented solutions of the
continuity equation and the conservation of linear momentum (commonly addressed as the Navier–Stokes equation) for an infinite rigid
pipe with a no-slip boundary condition for the fluid at the pipe wall. Specifically, Bernabé (2009) yield a dispersion relation relying on the
long-wavelength approximation, i.e. λ � L where λ is the wavelength of the fluid-flow wave, and neglecting advective terms:

k2
z = ω2

c2
0

[
1 − 2ν J1(

√
2i R/ν)

R J0(
√

2i R/ν)

] , (1)

where ν = √
2μf/(ρfω), known as viscous skin depth (e.g. Kurzeja et al. 2016) with μf the dynamic fluid viscosity, indicates the width of the

boundary layer controlled by viscous forces, and J0(.) and J1(.) denote the Bessel functions of first kind of zero and first order, respectively.
In deriving (1), Bernabé (2009) followed a ‘hybrid’ approach of accounting for the compressibility βf = 1/Kf of the fluid in the continuity
equation but not in the Navier–Stokes equation and requested the pressure profile perpendicular to the flow to be flat, that is independent of
the radial position in the fluid, as a consequence of the long-wavelength approximation.

According to (1), the propagation velocity of the fluid-flow wave in a rigid tube, c(ω) = ω/kz(ω), increases with increasing frequency,
asymptotically reaching the acoustic velocity of the fluid, and decreases with the decrease of the tubes radius. The damping coefficient of
these waves, conveniently integrated by the use of complex wavenumbers (Georgi 2015), see also Appendix A, is the larger the more the
viscous forces dominate, that is ν � R. The dispersion relation of the Biot-regime presented by Korneev (2010) is equal to (1) in the limit of
low-frequency and/or small borehole radius (Fig. 2).

In the course of the derivation of the solution for a borehole in an elastic medium, Bernabé (2009) made a number of approximations
regarding the relative size of terms involving Bessel functions, owing to which the dispersion relation depends only on the ability of the
solid to shear, represented by its shear wave velocity Vs, but not on the bulk modulus of the solid. The dispersion relation is a fourth-order
polynomial (see eq. 46 in Bernabé 2009), which has two physical solutions, a fast and a slow wave (Kurzeja et al. 2016). Damping of the slow
wave converges to the damping of a fluid-flow wave in a borehole with rigid walls (1) when Vs > c0 but exceeds that value when Vs < c0.
This increase in damping coefficient can be up to twice the value of a borehole with rigid walls for a porous medium with a shear velocity as
low as Vs = 300 m s−1 (Fig. 2).
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Figure 3. Relation between damping coefficient and frequency of a free oscillation propagating in a leaky borehole for different (a) permeabilities, (b) porosities
and (c) borehole radius according to (2).

2.2 Fluid-flow waves in leaky boreholes

We address boreholes in a rock whose hydraulic properties allow for fluid exchange with the borehole—on the characteristic timescale of the
fluid-flow wave—as leaky. A fluid-flow wave travelling in a leaky borehole is attenuated due to the irreversible flow between the borehole
and the permeable rock. We obtained a dispersion relation for a fluid wave traveling in a leaky borehole that extends Bernabé’s (2009)
approximate analytical solution (1) by modifying the boundary condition at the borehole wall to account for radial flow in a purely diffusive
process between the borehole and the porous medium (Appendix B):
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We relate the effective permeability in (2) to material properties, and fracture and borehole geometry depending on the type of considered
conduit (Appendix B) by

κeff =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

κ for a homogenous porous medium
L leaky

L κ for an open-hole section
w3 L F
12π RL for a pair of axial fractures
w3

12L for a radial fracture

. (3)

The dispersion relation (2) depends on permeability, diffusivity, and borehole radius, all affecting the damping coefficient of the flow
wave traveling in the leaky borehole. For an impermeable rock (κeff → 0), the dispersion relation (2) reduces to (1), which constitutes
the lower bound for the frequency-dependent damping coefficients (Fig. 3a). The effect of borehole radius on wall friction is as for tight
boreholes, that is the damping coefficient increases with decreasing borehole radius (Fig. 3b). Damping increases with effective permeability
at given frequency (Fig. 3a). A decrease in diffusivity leads to an increase in damping coefficient (Fig. 3c). For a given effective permeability,
diffusivity decreases when the storage capacity, in the following represented by apparent porosity φapp = seff Kf , increases. Apparent porosity
represents the porosity of a hypothetical porous medium with a rigid skeleton exhibiting the specific storage capacity of the real medium;
apparent porosity thus exceeds the true porosity since it attributes any contribution of skeleton deformation to specific storage capacity to a
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Table 1. Properties of the fluid (water) used in the
simulations.

ρf (kg m−3) μf (Pa s) βf (Pa−1)

1000 0.001 4.16E-10

Table 2. Spectral components of free pressure oscillation obtained by varying fluid compressibility in a tight borehole of 1 m
length and 0.004 m radius. Fluid velocity, nominal fundamental frequency and viscous skin depth depend on fluid compressibility.

βf (Pa–1) c0 (m/s) f0 (Hz) ν (m) R/ν (−) f (Hz) 
 f (Hz) δ (s–1) 
δ (s–1)

4.16E−09 4.90E+02 1.22E+02 5.10E−05 7.85E+01 1.2E+02 1.2E−01 5.4E+00 3.0E−01
4.16E−10 1.55E+03 3.87E+02 2.87E−05 1.40E+02 3.8E+02 2.0E−01 2.4E+01 1.4E+01
4.16E−11 4.90E+03 1.22E+03 1.61E−05 2.48E+02 1.2E+03 2.2E−01 1.0E+02 1.4E+01

compressible pore fluid (e.g. Schepp & Renner 2021). Thus, fractured media may reach apparent porosity values even exceeding 100 per cent
by large owing to the exceptional deformability of fractures (e.g. Fischer & Paterson 1992).

The effect of deformability of the solid medium housing a tight borehole on damping is limited (Fig. 2) as demonstrated by Bernabé
(2009). In contrast, specific storage capacity, partly related to the effective deformability of the solid, significantly affects the dispersion
relation (e.g. Fig. 3c). While physically inconsistent, it is therefore legitimate to use the rigid borehole formulation (1) and still allow for
specific storage capacity values corresponding to deformable media.

3 N U M E R I C A L M O D E L L I N G

Our numerical modelling focuses on the attenuation of fluid-flow waves in boreholes filled with water (Table 1) in impermeable and permeable,
rigid, solid media to resemble the conditions of the analytical solutions (1) and (2), respectively. In contrast to the analytical approach, the
numerical simulations treat boreholes of finite length allowing for standing waves. We also simulated flow waves in boreholes with a leaky
section of length L leaky < L at their bottom, a scenario not covered by the analytical solutions. The resulting pressure oscillations were
analysed as described in Appendix C.

Performing the numerical simulations also had the intention to assess whether any of the approximations inherent in the analytical
solutions are problematic regarding their use for typical borehole scenarios. Unfortunately, the numerical simulations exhibited their own
problems, a mesh-dependence of the results as detailed in Appendix D. Specifically, we found that the damping coefficient gained from
numerical simulations exceeds that predicted by the analytical solution (1) when the size of the mesh element closest to the borehole wall is
larger than the viscous skin depth.

3.1 Significance of approximations

The mesh-dependence of the numerical results complicates the assessment of the significance of approximations made for the analytical
solutions (1) and (2). Yet, from an a posteriori evaluation, we can say with confidence, however, that the long-wavelength approximation
underlying the analytical solutions holds for all considered model geometries in our simulations.

It is generally difficult to analytically asses the implications of the hybrid treatment of fluid compressibility in the analytical solution, that
is accounted for in the continuity equation but neglected in the Navier–Stokes equation (Kreiss et al. 1991; Fischer 2015). We therefore varied
the fluid compressibility over two orders of magnitude in numerical simulations (Table 2). The numerical results coincide with the analytical
solution for a fluid with 10 times the compressibility of water but for lower compressibility the numerical damping coefficients exceed the
analytical ones (Fig. 4). The agreement of the numerical results with the analytical predictions for highly compressible fluids suggests that
the hybrid treatment of fluid compressibility in the analytical treatment is legitimate. The discrepancies found for fluids as incompressible as
water result from the associated decrease in viscous skin depth (a low compressibility leads to an increase in oscillation frequency) giving
rise to the problems identified from the presented mesh-dependence analysis (Appendix D).

The neglect of advective inertia terms in the approximate analytical treatment of the Navier–Stokes equations may lead to an un-
derestimation of damping. Without a detailed explanation, Bernabé (2009) states that the neglect is not identical but in accord with the
long-wavelength approximation. The classical dimensional analysis reveals that the neglect is valid for sufficiently large Strouhal numbers
(Appendix E). The Strouhal numbers of our numerical models, calculated analytically and a posteriori using frequency and amplitude of the
simulated free pressure oscillation, are of the order of Staxial ∼ 109 and Stradial ∼ 1011 for the axial and radial velocity component, respectively
(Appendix E) supporting the neglect of advective terms in the analytical solution (1).

3.2 Results

The vast majority of simulations yield underdamped pressure oscillations that are in cases visibly multimodal in the time domain (Fig. 5).
Owing to the step-like excitation, the pressure responses exhibit harmonics of the fundamental frequency (higher modes), as evidenced
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1718 V.A. Jiménez Martı́nez and J. Renner

Figure 4. Effect of fluid bulk modulus on analytical (solid lines), that is according to (1), and on numerical (filled dots) damping coefficients for free pressure
oscillations in a borehole of 1 m length and 0.004 m radius. Vertical dashed lines indicate the viscous skin depth .

Figure 5. Free pressure oscillation in (left) time and (right) frequency domain resulting for the simulation performed in COMSOL in a borehole of 1 m length
with a radius of 0.004 m. The red dashed lines signify the local maxima in the frequency spectrum that correspond to the fundamental frequency and its odd
multiples (harmonics) indicated in red calculated using the conventional organ–pipe relations.

by the frequency spectrum (Fig. 5). Frequencies of the free pressure oscillations obtained in numerical simulations for tight (Table 3) and
leaky boreholes (Table 4)are consistent with the theoretical prediction of the nominal eigenfrequency of the classic organ–pipe relation for
a borehole with one open end for small damping coefficients. With increasing damping, frequencies of the numerical oscillations decreased
from the nominal eigenfrequency reaching as little as 40 per cent reduction (Table 4). Frequencies of the numerical oscillations are lower

than the ones expected for a damped harmonic oscillator, that is fδ =
√

(2π f0)2 − δ2/2π , by up to a factor of 1.5, but this discrepancy might
result from the overestimation of the damping coefficients due to the identified meshing-problems (Appendix D), and we thus cannot evaluate
whether the boreholes can be approximated as harmonic oscillators.

Damping coefficients increased when the viscous layer approached the radius of the borehole, for tight and leaky boreholes. In full-
and partial-length leaky boreholes, damping coefficients increased with the increase of permeability and/or length of the leaky section,
respectively. Damping coefficients exhibit significant differences between numerical results and analytical predictions (see Appendix D).
The discrepancies are not caused by the differences in the level of approximation of the analytical solution but reflect that the used mesh
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Table 3. Spectral components of the fundamental mode of pressure oscillations gained from the numerical modelling of tight boreholes.

P2v + P2p P1v + P1p

Prony MFT Prony
L(m) R(m) ν(m) R/ν(-) f (Hz) δ (s–1) f (Hz) f (Hz) δ (s–1)

1 0.01 2.9E−05 3.5E+02 3.8E+02 1.5E+01 ± 1.5E+00 3.8E+02 3.8E+02 1.1E+01
1 0.004 2.9E−05 1.4E+02 3.8E+02 2.0E+01 ± 5.7E−01 3.8E+02 3.8E+02 1.4E+01
1 0.001 2.9E−05 3.5E+01 3.8E+02 3.6E+01 ± 2.0E−02 3.8E+02 3.8E+02 5.1E+01
4 0.04 5.8E−05 6.9E+02 9.6E+01 4.1E+00 ± 4.5E−01 9.6E+01 – –
4 0.01 5.8E−05 1.7E+02 9.5E+01 5.7E+00 ± 6.5E−01 9.5E+01 – –
4 0.004 5.8E−05 6.9E+01 9.5E+01 7.1E+00 ± 7.3E−01 9.5E+01 – –
4 0.001 5.9E−05 1.7E+01 9.2E+01 1.9E+01 ± 1.0E+00 9.2E+01 – –
4 0.0004 6.0E−05 6.7E+00 8.8E+01 5.5E+01 ± 1.5E+00 9.0E+01 – –
8 0.04 8.1E−05 4.9E+02 4.8E+01 1.2E+00 ± 8.0E−02 4.9E+01 4.7E+01 1.6E+00
8 0.001 8.3E−05 1.2E+01 4.6E+01 1.2E+01 ± 5.8E−01 4.8E+01 4.5E+01 1.7E+01
100 0.1 2.9E−04 3.4E+02 3.7E+00 1.4E−01 ± 5.7E−03 3.8E+00 3.8E+00 3.0E−01
100 0.01 2.9E−04 3.4E+01 3.7E+00 5.3E−01 ± 2.1E−02 3.7E+00 3.5E+00 1.2E+00
100 0.004 2.9E−04 1.4E+01 3.7E+00 8.5E−01 ± 2.5E−02 3.7E+00 3.6E+00 1.4E+00
1000 0.1 9.3E−04 1.1E+02 3.7E−01 3.5E−02 ± 2.5E−03 3.7E−01 3.5E−01 1.1E−01
1000 0.04 9.3E−04 4.3E+01 3.7E−01 5.3E−02 ± 4.5E−03 3.7E−01 3.5E−01 1.2E−01

Table 4. Spectral components of the fundamental mode of pressure oscillations gained from the numerical modelling of leaky boreholes. All
simulations were performed assuming an isotropic porous medium using the fluid polynomial interpolating function P2v + P2p except for the
cases marked with ∗.

Prony MFT
κ (m2) L (m) L leaky/L (-) R (m) ν (m) R/ν (-) f (Hz) δ (s–1) f (Hz)

1E−18 1000∗ 1 0.18 9.15E−04 1.97E+02 3.80E−01 3.23E−02 ± 2.36E−03 3.80E−01
1E−17 1000∗ 1 0.18 9.15E−04 1.97E+02 3.80E−01 3.48E−02 ± 3.20E−03 3.80E−01
1E−16 1000∗ 1 0.18 9.15E−04 1.97E+02 3.80E−01 1.05E−01 ± 5.77E−03 3.80E−01
1E−15 1000∗ 1 0.18 9.75E−04 1.85E+02 3.35E−01 7.08E−01 ± 4.10E−01 3.80E−01
1E−14 1000∗ 0.001 0.18 9.29E−04 1.94E+02 3.69E−01 3.23E−02 ± 9.57E−04 3.80E−01
1E−15 1000∗ 0.001 0.18 9.28E−04 1.94E+02 3.70E−01 4.48E−02 ± 9.57E−04 3.70E−01
1E−16 1000∗ 0.01 0.18 9.28E−04 1.94E+02 3.70E−01 4.68E−02 ± 9.57E−04 3.70E−01
1E−15 1000∗ 0.01 0.18 9.28E−04 1.94E+02 3.70E−01 5.38E−02 ± 9.57E−04 3.70E−01
1E−18 100 1 0.01 2.93E−04 3.41E+01 3.70E+00 5.80E−01 ± 2.00E−02 3.79E+00
1E−17 100 0.02 0.01 2.89E−04 3.46E+01 3.80E+00 4.30E−01 ± 5.00E−03 3.76E+00
1E−17 100 0.1 0.01 2.93E−04 3.41E+01 3.70E+00 8.00E−01 ± 2.60E−02 3.79E+00
1E−17 100 0.2 0.01 2.93E−04 3.41E+01 3.70E+00 1.23E+00 ± 5.70E−02 3.79E+00
1E−17 100 0.5 0.01 2.93E−04 3.41E+01 3.70E+00 2.23E+00 ± 5.70E−02 3.78E+00
1E−17 100 0.8 0.01 2.93E−04 3.41E+01 3.70E+00 2.60E+00 ± 5.70E−02 3.77E+00
1E−17 100 1 0.01 2.93E−04 3.41E+01 3.70E+00 2.60E+00 ± 5.70E−02 3.74E+00
1E−16 100 0.02 0.01 2.89E−04 3.46E+01 3.80E+00 7.80E−01 ± 7.20E−02 3.75E+00
1E−16 100 0.1 0.01 2.93E−04 3.41E+01 3.70E+00 5.10E+00 ± 5.70E−03 3.80E+00
1E−16 100 0.2 0.01 3.06E−04 3.27E+01 3.40E+00 9.90E+00 ± 4.30E−04 3.80E+00
1E−15 100 0.001 0.01 2.89E−04 3.46E+01 3.80E+00 5.90E−01 ± 5.10E−02 3.76E+00
1E−15 100 0.01 0.01 2.97E−04 3.36E+01 3.60E+00 3.60E+00 ± 1.80E−02 3.60E+00
1E−15 100 0.02 0.01 2.97E−04 3.36E+01 3.60E+00 4.50E+00 ± 2.00E−01 3.76E+00
1E−14 100 0.001 0.01 2.93E−04 3.41E+01 3.70E+00 1.48E+00 ± 5.70E−02 3.60E+00
1E−14 100 0.01 0.01 3.72E−04 2.69E+01 2.30E+00 7.20E+00 ± 5.10E−03 2.70E+00
1E−13 100 0.001 0.01 3.15E−04 3.17E+01 3.20E+00 3.25E+00 ± 1.52E−01 3.30E+00
1E−17 400 0.01 0.01 5.88E−04 1.70E+01 9.20E−01 1.95E−01 ± 1.10E−02 9.20E−01
1E−17 400 0.1 0.01 5.87E−04 1.70E+01 9.23E−01 3.10E−01 ± 9.50E−03 9.20E−01
1E−17 400 0.8 0.01 5.87E−04 1.70E+01 9.23E−01 9.33E−01 ± 3.20E−02 9.20E−01
1E−17 400∗ 0.8 0.01 5.85E−04 1.71E+01 9.20E−01 9.30E−01 ± 2.94E−02 9.20E−01
1E−18 4 1 0.01 5.79E−05 1.73E+02 9.50E+01 6.00E+00 ± 3.60E−02 9.54E+01
1E−17 4 1 0.01 5.79E−05 1.73E+02 9.50E+01 7.80E+00 ± 4.10E−02 9.56E+01
1E−16 4 1 0.01 5.79E−05 1.73E+02 9.50E+01 4.20E+01 ± 1.20E−03 9.52E+01

size is insufficient to resolve the velocity gradient for small viscous skin depths. The numerical damping coefficients compare well with the
analytical ones when the radius of the first element close to the borehole wall is close to the viscous skin depth.

Inversion of frequency and damping coefficient towards permeability gives values above the values prescribed in the numerical model
as a result of the overestimation of the damping coefficient. Nevertheless, the inverted permeability increases with the increase of the leaky
section of the borehole for partial-length leaky boreholes (see Appendix D).
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1720 V.A. Jiménez Martı́nez and J. Renner

Table 5. Set-up parameters of the considered field campaigns during which free pressure oscillations were recorded. The expected fundamental
frequency of the free pressure oscillation is calculated according to the organ–pipe relation using the total length of the system for the two end-
conditions.

Site, borehole
Pipe
radius

Interval
radius

Total
length

Interval
length

Fundamental
frequency

Nyquist
frequency comment

(m) (m) (m) (m) (Hz) (Hz)
One

open end
Closed

ends

Double-packer intervals
Calibration experiment 0.005 0.038 41 0.7 9 18 10 Tubes with fittings
Freiberg, BH10 0.005 0.038 41 to 59 0.7 6.5– 9 13–17 2.5 and 10 Tubes with fittings
Hong Kong 0.004 0.038 301 0.7 1.25 2.5 2.5 Coiled tubing
Cased wells
KTB, HB 0.14 0.18 9100 70 0.04 0.08 2.5
Horstberg 0.10 0.18 4000 2 and 4 0.09 0.19 0.5
Groß Buchholz, GT1 0.18 0.18 4000 2 0.09 0.19 0.5 Deviated

3.3 Implications for the analysis of field data from the comparison of numerical and analytical results

Analytical relations have obvious benefits for an inversion of field observations compared to numerical simulations. However, the analytical
solution (1) is based on approximations whose consequences are to some extent hard to predict, for example regarding the incomplete account
of fluid compressibility. We assessed the significance of these approximations by numerical results that in turn exhibited limitations related
to insufficient mesh density near the borehole wall (Appendix D). These numerical problems strongly affected the damping coefficients of
the simulated free pressure oscillations.

The analytical dispersion relations for infinitely long boreholes do not predict which frequency will be observed for a borehole with finite
length. As shown by our numerical results, the frequencies of flow waves in tight, leaky or partially leaky boreholes are well approximated by
the conventional length-relation for the appropriate end-condition, i.e. the classic organ–pipe relation, using the entire borehole length even
for partially leaky boreholes. Dissipation due to the two mechanisms of wall friction and leakage reduces the frequency, qualitatively similar
to what is known for a damped harmonic oscillator. As long as the oscillation is far from being overdamped, that is δ < 2π f0, the observed
frequencies are, however, indicative of the length and the end condition of the fluid column, in which fluid waves interfere to form standing
waves.

The analytical dispersion relations (1) and (2) predict the damping coefficient of a free oscillation in a tight or leaky borehole with
finite length for given radius, fluid viscosity, and effective permeability and storage capacity of the porous medium. For tight and full-length
leaky boreholes, the numerical damping coefficients are equal to or exceeded the analytical ones. Our numerical tests for tight boreholes
demonstrate that the overestimation of numerical damping coefficients relative to the analytical ones results from insufficient resolution of the
velocity profile close to the borehole wall. The resolution problem is aggravated for leaky boreholes since the velocity gradient close to the
borehole wall also controls pressure diffusion into the porous medium. Modelling fractures intersecting the borehole would require an even
finer mesh inside the fracture than the mesh required for the borehole alone to solve the velocity gradient inside the fracture. A dedicated code
would be needed that generates meshes sufficiently fine in radial direction to capture the strong velocity changes in radial direction within
the viscous skin depth.

Based on our theoretical and numerical analyses, we propose a sequential workflow for the evaluation of free oscillations recorded
during pumping operations in boreholes. First, their spectral components, i.e. frequency and damping coefficient, are determined using Prony
analysis, assisted by FFT and/or MFT. In the second step, frequency is assessed in the light of the conventional organ–pipe relations accounting
for possible reduction due to damping. Actually, the two end conditions considered for the classic organ–pipe relations, i.e. open or closed, are
just endmembers of the frequency of a flow wave in a borehole; the frequency is a continuous function of the storage capacity of a reservoir,
Sres, at the tube’s end(s) (Appendix F). The two endmembers ‘open’ and ‘closed’ correspond to Sres → ∞ and Sres → 0, respectively. In the
final step, the spectral components are compared to the dispersion relation for a tight borehole (1) to assess whether the damping is due to wall
friction or due to leakage. If the damping coefficient is similar to that given by (1), hydraulic analysis is not possible, since the oscillations are
likely governed by wall friction. A damping coefficient significantly above the limit given by (1) promises a sensible hydraulic analysis based
on (2). In the sequel, we apply the proposed workflow to free-oscillation observations from five field tests with different set ups to investigate
whether significant hydraulic properties can be deduced from them.

4 F I E L D E X P E R I M E N T S

The field data are from five different campaigns with a range of set-ups that include double-packer intervals and cased wells with open-hole
or perforated sections (Table 5). These tests constitute examples of partial leakage close to the bottom of the borehole where the length of the
leaky section is less than 2 per cent of the total length of the system. The open-hole sections occur in long boreholes, i.e. more than 4000 m
length, with a similar diameters of the injection line and the open-hole section. The deviation of one of the boreholes may cause dissipation
not addressed by our modelling.
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Free pressure oscillations in boreholes 1721

Table 6. Spectral components of free pressure oscillations derived from numerical simulations for a borehole
of 1 m length using different mesh sizes and two types of meshes (see Fig. D1).

Mesh R (m) Order f (Hz) δ (s–1) re (m) ν (m)

ext.coarse 0.004 1 380 24 2.5E−04 2.9E−05
ext.coarse 0.004 3 1129.2 120 2.5E−04 1.7E−05
ext.coarse 0.004 5 1862 200 2.5E−04 1.3E−05
ext.coarse 0.004 7 2608.5 260 2.5E−04 1.1E−05
coarse 0.004 1 383 14 1.0E−04 2.9E−05
coarse 0.004 3 1137 70 1.0E−04 1.7E−05
coarse 0.004 5 1881.6 130 1.0E−04 1.3E−05
coarse 0.004 7 2635 190 1.0E−04 1.1E−05
fine 0.004 1 383.6 13 6.2E−05 2.9–05
fine 0.004 3 1142.3 48 6.2E−05 1.87–05
fine 0.004 5 1898.6 88 6.2E−05 1.3E−05
fine 0.004 7 2651.6 150 6.2E−05 1.1E−05
purely triangular 0.004 1 381 17 1.8E−04 2.9E−05
purely triangular 0.004 3 1132.5 93 1.8E−04 1.7E−05
purely triangular 0.004 5 1866.9 170 1.8E−04 1.3E−05
purely triangular 0.004 7 2615.4 260 1.8E−04 1.1E−05
purely triangular 0.004 1 382.9 14 9.0E−05 2.9E−05
purely triangular 0.004 3 1138 52 9.0E−05 1.7E−05
purely triangular 0.004 5 1888 100 9.0E−05 1.3E−05
purely triangular 0.004 7 2629 180 9.0E−05 1.1E−05
ext.coarse 0.001 1 377.7 37 1.1E−04 2.9E−05
ext.coarse 0.001 3 1124 170 1.1E−04 1.7E−05
ext.coarse 0.001 5 1872 320 1.1E−04 1.3E−05
ext.coarse 0.001 7 2589 540 1.1E−04 1.1E−05
coarse 0.001 1 380.5 37 5.0E−05 2.9E−05
coarse 0.001 3 1136.4 82 5.0E−05 1.7E−05
coarse 0.001 5 1875.6 140 5.0E−05 1.3E−05
coarse 0.001 7 2617.1 200 5.0E−05 1.1E−05
fine 0.001 1 380.3 37 3.0E−05 2.9E−05
fine 0.001 3 1138.9 85 3.0E−05 1.7E−05
fine 0.001 5 1883.1 130 3.0E−05 1.3E−05
fine 0.001 7 2643.1 230 3.0E−05 1.1E−05

The double-packer set-ups are characterized by injection lines with 7 to 20 times smaller radius of tubes (and hoses) connecting the
probe with the surface and the tested well interval. Since the considered intervals are also much shorter than the associated injection lines,
they may constitute a ‘boundary condition’ for the flow wave, i.e. the pressure is ‘instantaneously’ uniform in it, rather than a ‘change in tube
diameter’, see Appendix F. The fittings between the injection tubes (and hoses) may give rise to turbulence and thus enhanced effective wall
friction.

In all field tests except one of the double-packer set-ups (see Reiche Zeche and Calibration test in Table 5), the Nyquist frequency
exceeded the fundamental frequency calculated for boreholes with one open and two closed ends using the total length of the specific system
(Table 5). Thus, aliasing cannot be ruled out if the Nyquist frequency is not higher than the fundamental frequency of a borehole with two
closed ends. In all other cases, the observed oscillations should reflect the true frequency. We analysed the recorded free pressure oscillations
using the procedure applied to the numerical results, that is FFT, MFT and Prony analysis. We would like to point out that the viscous skin
depths corresponding to the frequencies of observed oscillations fall in the range, for which the deviations of the numerical results from the
analytical model (2) are still modest (Fig. D8).

The analytical solution for fluid flow waves in infinitely long leaky boreholes (2) assumes that the radial fluid velocity is equal to Darcy’s
law at any ‘depth’. For boreholes with finite length or leaky sections, the boundary condition for the fluid exchange between borehole and
formation is accounted for by the volume balancing leading to effective permeabilities (3). In practical applications, the ‘true hydraulic’ length
of a leaky section is often unknown motivating the use of hydraulic transmissivity that reflects the hydraulic characteristics of a borehole rather
than a medium. The relation between borehole and medium properties reads T = ρf gL leakyκ/μf , where g is the gravitational acceleration.

4.1 Cased wells with perforations or open-hole sections

4.1.1 Field equipment and site description

4.1.1.1 Horstberg and Groß Buchholz The boreholes Groß Buchholz GT1 and Horstberg are located at the outskirts and about 80 km NE
of Hannover, respectively. The two cased boreholes have lengths of about 4000 m. Borehole Horstberg is vertical while Groß Buchholz is
deviated 30◦ on its final 800 m. A range of pumping operations aimed to stimulate perforated Bunter sandstone sections close to the bottom
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1722 V.A. Jiménez Martı́nez and J. Renner

Figure 6. Damping coefficient (top) and frequency (bottom) of the free pressure oscillations observed for boreholes (a) Groß Buchholz and (b) Horstberg
during pumping operations as a function in their chronological order. The red data point denotes the observation during the pulse test in borehole Horstberg.
The frequencies of oscillations depend on borehole mean pressures. The nominal eigenfrequency f̂0 = c0/(2L), indicated in a horizontal red line, for both
boreholes with a length of 4000 m is 0.19 Hz .

of the boreholes, of 2 m length (3902.5–3926.6 m) in Volpriehausen and 4 m length (3787–3791 m) in Detfurth formation for Horstberg, and
2 m length (3707–3709 m) in Volpriehausen formation for Groß Buchholz. The casing radius and thus the radius of the injection sections is
0.18 m for both, but the radius of the inner liner is 0.1 m for Horstberg and 0.18 m for Groß Buchholz.

4.1.1.2 KTB The KTB main hole (Hauptbohrung) is located in Windischeschenbach, Bavaria, Germany. The borehole penetrates parag-
neisses, ortogneisses, and metabasic rocks (Emmermann & Lauterjung 1997). The cased section of the borehole has a length of 9030 m and
the radius of the inner injection liner was 0.14 m. The open-hole section has a nominal radius of 0.18 m and a length of 70 m between 9030 m
and the final depth of 9100 m. At the start of the hydraulic testing, a pulse test was carried out to assess the integrity of the inner liner when
it was still closed by a burst disc at its lower end. After the disc was brought to failure, several hydraulic fracturing tests were performed in
the open-hole section followed by 5 pulse tests during which the pressure response exhibited oscillatory behaviour.

4.1.2 Results

4.1.2.1 Groß Buchholz and Horstberg During the pumping operations in borehole GT1 (Groß Buchholz), the early oscillations (1 to 13)
exhibited frequencies of about 0.22 Hz close to the Nyquist frequency of the recording (Table 5). After the injection of a large fluid volume,
during which the pressure critical for opening pre-existing fractures of 35 MPa was exceeded (Fischer 2016), the frequencies started decaying
slightly (Fig. 6a). Further injection and production cycles and the second stimulation enlarged the fracture area (Pechan et al. 2014, 2015)
and in their wake, the fracture apparently lost its ability to close fully even at borehole pressures below the nominal opening pressure. The
oscillations during this phase showed a continuous decrease in their frequencies from 0.13 Hz (oscillations 19 to 48 in Fig. 6a) to 0.10 Hz
(oscillations 49 to 63 in Fig. 6a). The damping coefficient slightly increased towards the end of the operations (Fig. 6a top).

In the Horstberg borehole, free oscillations were recorded when injecting in either the Volpriehausen (oscillations 1–18) or the Detfurth
(oscillations 19–37) formation. The set of oscillations recorded during pulse tests in the Volpriehausen formation exhibits frequencies around
0.18 Hz and 0.10 Hz at borehole pressures below and above the opening pressure of about 42 MPa (Gerling et al. 2015), respectively (Fig. 6b).
Frequencies of oscillations also ranged around 0.1 Hz during the stimulation operations carried out in the Detfurth formation (Fig. 6a top) at
injection pressures between 20 and 30 MPa that sufficed to open existing fractures and create new ones (Gerling et al. 2015). The damping
coefficients range between 0.009 and 0.025 s–1, the higher values associated with the lower frequencies around 0.1 Hz (Fig. 6b).

The frequencies of the free pressure oscillations recorded in Horstberg and Groß Buchholz, when the present fractures were presumably
closed or at least partially closed, are close to the eigenfrequency f̂ 0 ∼ 0.19 Hz of a tube with a length of 4000 m and two closed ends (Figs 7a
and b). The damping coefficients associated with these frequencies are between 2 and 10 times higher than the limit posed by (1) for Groß
Buchholz (Fig. 7a), while the deviation is less than a factor of 2 for Horstberg (Fig. 7b). In contrast, the damping coefficients associated with
frequencies around 0.1 Hz, observed when fractures were presumably open, exceed the tight-borehole damping coefficient by 20 to 30 times
for Groß Buchholt and Horstberg (Figs 7a and b). Therefore, we inverted only these latter pairs of frequency and damping coefficient for
hydraulic properties using the model for leaky boreholes (2).

The spectral components suitable for hydraulic analysis give effective permeabilities of ∼10−17 to ∼10−13 m2 for either borehole,
unaffected by varying apparent porosity from 1 × 10−2 to 1 × 10−1 (Fig. 8a). These effective permeabilities correspond to effective fracture
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Free pressure oscillations in boreholes 1723

Figure 7. Comparison of damping coefficients and frequencies from free oscillations observed for (a) Groß Buhholz, (b) Horstberg and (c) KTB with wall
friction given by (1), using the radii indicated in the plots. Red data point denotes the pulse test in Horstberg and the sealing test in KTB before stimulation.
Colouring indicates the temporal evolution of the spectral components of the pressure oscillations. The vertical red lines indicate the nominal eigenfrequencies
of the boreholes.

apertures of ∼10−5 to ∼10−4 m using the relations given in (3) for both axial and radial fractures, matching the effective fracture aperture
of about ∼10−4 m calculated from the fracture transmissibility values reported by Pechan et al. (2015) for Groß Buchholz. The wide range
of permeability seems to reflect its pressure dependence (Fig. 8b and c). Pressure increased by 45 MPa with progressing pumping for Groß
Buchholz (Fig. 8b), but decreased by 25 MPa for Horstberg (Fig. 8c). The sensitivity of permeability to fluid pressure can be represented by
the permeability modulus Kk = ∂pf/∂ ln k (Yilmaz et al. 1994), a small value of Kk indicating a strong dependence of permeability on fluid
pressure. The apparent permeability modulus deduced from using the borehole pressure, an upper bound for the fluid pressure in the tested
fractures, ranges between 3.5 and 10 MPa and between 15 and 85 MPa for Horstberg and Groß Buchholz, respectively (Fig. 8c). While our
approach likely overestimates the true permeability moduli, because we used changes in the borehole pressure that likely exceed changes
in the fluid pressure along the fracture, the gained values are comparable to permeability moduli of fractured Bunter sandstone reported by
Hernandez Castañeda (2020) and of different types of fractured rocks reported by Kranz et al. (1979) and Raven & Gale (1985).

Previous spectral analysis of free pressure oscillations in Groß Buchholz GT1 using Weidler’s (1996) model yielded a decrease in
transmissivity during the course of the stimulation (Fischer 2016). This result is not only counterintuitive since transmissivity values should
increase during hydraulic stimulation as a consequence of the creation of new fractures and/or the shearing of pre-existing ones but also at
conflict with the independent conventional analyses of observed pressure transients (Pechan et al. 2015).In the light of the derived analytical
solution (2), the increase in damping coefficient observed in the course of the stimulation (Fig. 7a) indicates that transmissivity has actually
increased, i.e. our treatment resolves the problems apparently associated with the oscillation analysis. The decrease in permeability over the
course of pumping operations in Horstberg is likely due to the coeval decrease in mean injection pressure (Fig. 8c).

4.1.2.2 KTB The free oscillation that occurred, when the burst disc was still intact in the KTB main hole, had a frequency in agreement with
the eigenfrequency f̂ 0 ∼ 0.086 Hz of a 9030 m long tube with both ends closed. The damping coefficient for this oscillation is about two times
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1724 V.A. Jiménez Martı́nez and J. Renner

Figure 8. (a) Comparison of damping coefficients and frequencies from the observed free oscillations in Groß Buchholz, Horstberg and KTB with the
theoretical predictions for leaky boreholes (2), using the indicated effective permeability (colour bar) and apparent porosity. Effective permeabilities as a
function of mean interval pressure during oscillations and chronological order of appearance (colour bar) for (b) Groß Buchholz, (c) Horstberg and (d) KTB.
Red lines represent the linear relation ln(κ) = ln(κ0) + 
P/Kk, where κ0 is the permeability at zero pressure and Kk denotes the permeability modulus.

the value of the theoretical prediction for a tight and rigid system (Fig. 7c). The oscillations recorded after the inner liner was connected to the
open-hole section exhibited higher frequencies and ten times higher damping coefficients values than observed before (Fig. 7c). Contrary to
the observed increase in frequency, the increase in length of the hydraulic system associated with the removal of the burst disk should result
in a minor decrease in frequency. The increase in damping coefficient beyond that given by (1) suggests that leakage into the metamorphic
rock rather than wall friction controls pressure wave attenuation after removal of the burst disk.

The characteristics of the free pressure oscillations that occurred during pumping operations after the disk failure correspond to effective
permeabilities of about 10−14 m2 according to (2), see Fig. 8(d). The effective permeability does neither increase with the progression of the
pumping nor with the modest increase of injection pressure by ∼5 MPa (Fig. 8d). Shapiro et al. (1997) estimated a permeability of ∼10−16

m2 from the growth of the cloud of induced seismic events, assuming an effective storage capacity of ∼10−14 Pa–1. The value for the storage
capacity used by Shapiro et al. (1997) is two orders of magnitude lower than the value assumed for our analysis, i.e. φ/Kf = 4 × 10−12 Pa–1,
corresponding to an apparent porosity φ = 1 × 10−2. For the specific storage capacity used by Shapiro et al. (1997), i.e. using seff = 5 × 10−14

Pa–1, the predictions by (2) shift downwards leading to an increase in permeability obtained from the free oscillations and thus an even larger
difference to the estimate reported by Shapiro et al. (1997). Using the relations given in (3), an effective permeability of 10−14 m2 corresponds
to fracture apertures of 0.2 or 1 mm for a pair of axial fractures (assuming L f = 70 m) or a radial fracture, respectively. The comparison
of results is not without problems since the analyses by Shapiro et al. (1997) is indirect. However, differences between the estimates for
permeability may reflect scale-dependence of permeability (e.g. Song & Renner 2006; Boutt et al. 2012; Kinoshita & Saffer 2018), since
free-pressure oscillations are associated with a penetration depth rp ∼ √

κeff/(μf seff f0) of about 5 m, while the observed seismic cloud covers
distances from the borehole beyond ∼100 m.
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Figure 9. Sketch (not to scale) of the set up used during the stimulation protocols in the injection borehole in the mine Reiche Zeche, Freiberg, Germany. In
the calibration experiment, the borehole was modelled by a steel pipe of 4 m length. The total length of the injection line, L tube, depends on the number of
tubes, ntube, used, each with 3 m length. We used ntube = 10 for the calibration experiment.

4.2 Double-packer intervals

Experiments with the double-packer probe of Solexperts GmbH, Bochum, Germany, were carried out in boreholes in Freiberg, Germany, and
Hong Kong, China, and in a steel tube in the course of a calibration test. The probe consisted of two inflatable packers isolating an interval
of 0.7 m length connected to the pump at the surface by straight tubes in Freiberg and by a coiled tubing in Hong Kong. At either site, the
packers were connected to the pump by a coiled tubing. The interval pressure was measured with an uphole sensor as well as a downhole
sensor (Fig. 9) whereas a single uphole sensor was used for the packer pressure. During field tests and calibration tests, free oscillations were
excited when the pump valve was rapidly opened or closed.

4.2.1 Field equipment and site description

4.2.1.1 Calibration experiment A calibration experiment was conducted with the probe inserted in a steel tube with a radius of 0.038 m and
an injection line comprised of 10 steel tubes with 3 m length and 5 mm inner radius, consistent with the field set up in Freiberg. Pressures
were recorded with a sampling rate of 20 Hz.

4.2.1.2 Reiche Zeche, Freiberg As part of the STIMTEC project (Renner et al. 2020; Jiménez Martı́nez & Renner 2021; Boese et al. 2022),
stimulation tests were performed in a 63 m long borehole with a radius of 0.038 m dipping 15◦ downwards starting from a horizontal tunnel
in the research mine Reiche Zeche in Freiberg, Saxony, Germany. The penetrated rock is a gneiss. Ten intervals were successively isolated by
the double-packer probe and connected to the pump by a 10 m long hose and an injection line of steel tubes of 3 m length and 5 mm inner
radius. The number of tubes used increased from 11 to 16 with increasing depth. Signals of the three pressure sensors (Fig. 9) were recorded
with a sampling rate of 5 and 20 Hz during the field tests of intervals deeper than 33.1 m and at 28.1 m, respectively.

4.2.1.3 Hong Kong Hydraulic fracturing tests were performed in a vertical borehole (BH-CAV108) with a length of 279.68 m and a radius
of 0.038 m penetrating granite in Sha Tin, Hong Kong (Gerd Klee 2018, personal communication). Ten test intervals of 0.7 m length were
selected at different depths. The injection line was a coiled tubing of 300 m length with a radius of 0.004 m. Signals of the downhole pressure
sensor were recorded with a sampling rate of 5 Hz.
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1726 V.A. Jiménez Martı́nez and J. Renner

Figure 10. Spectral components from the calibration experiment for the set up used in Freiberg calculated using Prony analysis (yellow data points and their
representation by the yellow shadowed areas). Spectral components for oscillations observed for the interval at 28.1 m in borehole BH10, Reiche Zeche,
Freiberg. (a) Frequency and (b) damping coefficient as a function of mean interval pressure. (c) Damping coefficient vs. frequency for the oscillations from the
interval at 28.1 m in comparison with the theoretical damping from wall friction using the indicated radii representing the injection tubes (0.005 m) and the
interval (0.038 m).

4.2.2 Results

4.2.2.1 Calibration experiment During the calibration experiment, we recorded 13 oscillations in interval pressure by the uphole and
downhole sensors, and 16 oscillations in packer pressure. The latter had a frequency of f0 = 3.9±0.3 Hz, in close agreement with the
theoretical prediction of f0 = 4.0 Hz for a standing wave in a tube with one open-end and the length of the coiled tubing connected to
the packers, 92 m. The packer volume is two times the tubing volume and thus apparently acts similar to a constant-pressure boundary
characterizing an open end, see Appendix F.

The interval-pressure oscillations exhibited frequencies varying from 5 to 10 Hz (Fig. 10a). Neither frequency nor associated damping
coefficients seem to vary systematically with mean interval pressure (Figs 10a and b). The variability in frequency and damping coefficient
may arise from turbulence in the flow due to the tube fittings (Fig. 9). For a standing wave in a 40 m long tube (10 tubes of 3 m length and
the hose of 10 m length), one open end should give an eigenfrequency of 9 Hz whereas two closed ends give 18 Hz. The interval and the
injection line have similar volumes of about 3 litres and therefore the end condition is difficult to predict. Furthermore, the frequencies of the
recorded oscillations might be affected by aliasing since the eigenfrequency of 18 Hz of a tube with two closed ends surpasses the Nyquist
frequency of 10 Hz, i.e. the observed frequencies could be apparent and low compared to the real eigenfrequencies of the system.

4.2.2.2 Reiche Zeche, Freiberg In the field campaign at Reiche Zeche, 30 free oscillations occurred during pumping operations in the
intervals at 28.1, 33.9, 37.9 and 49.7 m. For the last three intervals, free oscillations took place when the interval was depressurized, i.e. when
the interval was briefly vented to air pressure (Fig. 11a). This venting process induces a backflow from the pressurized fluid in the fracture(s)
to the interval at low pressure. The frequencies of these oscillations around 1 Hz differ from the range observed in the calibration test, that
is 5–10 Hz, already potentially underestimated due to aliasing, even after accounting for the difference in tube length. Such a significant
deviation from the fundamental frequency is at odds with the numerical results that revealed small reductions in frequencies of free pressure
oscillations for leaky sections (see Appendix D). We thus suspect that the determined frequency values are affected by aliasing. For a sampling
rate of 5 Hz, the nominal eigenfrequency of 9 Hz (assuming one open end) will be recorded as an oscillation with an apparent frequency of
1 Hz (Penny et al. 2003).

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/232/3/1713/6670791 by guest on 02 D

ecem
ber 2022



Free pressure oscillations in boreholes 1727

Figure 11. Examples of free oscillations recorded in the intervals at (a) 37.9 m, associated with a back-flow test (Q denotes flow rate) during a shut-in phase,
and at (b) 28.1 m, associated with initial shut-in, in Reiche Zeche, Freiberg. The pressure recorded by the uphole sensor (Pup) shows a higher amplitude than
that at the downhole sensor (Pdown) for the interval at 28.1 m; the opposite is true for the interval at 37.6 m. Oscillations are also recorded by the sensor
connected to the packer line (Ppack).

The frequencies of the oscillations for the interval at 28.1 m lie in the range of the frequencies recorded in the calibration experiment
(Fig. 10a). These frequencies are more reliable than the oscillation frequencies from the other intervals since a higher sampling frequency
(20 Hz) was used, i.e. sufficient for one open-end (9 Hz). These oscillations took place during changes in flow rate at elevated pressure
(Fig. 11b). The majority of their spectral components lie in the range of those of the calibration experiment (Figs 10a and b) but above the
analytical curve of wall friction of the tubes with a radius of 0.005 m. The effect of wall friction associated with the borehole wall comprising
the interval with a radius of 0.038 m is negligible. For the hydraulic analysis, we consider only the oscillations with spectral components lying
outside the range covered by the calibration data (Fig. 10c).

The observed damping exceeds that of the coiled tubing alone indicating a contribution by leakage in the interval (Fig. 10c). Because our
model does not account for changes in radius, we invert the spectral parameters using the dispersion relation for full-length leaky boreholes
(2) with the interval radius. The transmissivity values of the borehole range between 10−10 to 10−7 m2 s−1 using an apparent porosity of
φ = 1 × 10−2 and a total injection length of 41 m (Table 5). These transmissivity values likely represent overestimations because of the
damping in the narrow tube, yet they compare well with the range of transmissivities obtained from periodic pumping tests (PPT) performed
with periods ranging from 40 to 900 s at different interval mean pressures after stimulation (Jimenez Martinez 2020).

4.2.2.3 Hong Kong Free oscillations were recorded by the downhole pressure sensor during the tests in Hong Kong for all intervals. The
analysis of the spectral components revealed frequency values around 1.25 Hz (Fig. 12), coinciding with the nominal eigenfrequency for
one open end (Table 5). The volume of the interval of about 3 litres is five times lower than the volume of the injection line, thus here the
interval probably constitutes a closed end-condition; yet, the oscillations occurred during a change in the flow rate (non-zero) before the valve
is closed, which may result in an open-end condition for the inlet of the tubing. The damping coefficients range between the predictions for
viscous damping of flow waves in rigid (1) and elastic pipes (using eq. 46 in Bernabé 2009), see Fig. 12. Thus, the oscillations seem to reflect
wall friction in the long narrow coiled tubing that is not perfectly rigid.
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Figure 12. Spectral components of free oscillations observed after stimulation in borehole BH-CAV108, Hong Kong. Top: Comparison of the observed
damping coefficients with the predicted damping from wall friction (calculated using the observed frequency range) for a rigid (green shaded area) and an
elastic pipe (yellow shaded area, Vs = 3000 m/s) with a radius of 0.004 m, i.e. that of the injection line. Bottom: Comparison of the observed frequencies with
the eigenfrequency of a pipe with a length of 300 m and one open end (red line).

5 D I S C U S S I O N

5.1 Usefulness of free pressure oscillation for hydraulic analyses

The fundamental benchmark for the usefulness of observed free oscillations for hydraulic analyses is the frequency-damping coefficient
relation for a tight borehole. The numerical results confirm the fundamental applicability of the analytical model of Bernabé (2009), although
it was derived neglecting advective terms in the Navier–Stokes equation and the continuity equation, and nonlinear terms due to the fluid
compressibility in the Navier–Stokes equation. Thus, the analytical model can be used as a diagnostic tool for the dominance of wall friction,
as applies to the field study in Hong Kong. Only when observed damping coefficients exceed those associated with the attenuation of a flow
wave due to wall friction a meaningful hydraulic analysis is possible. Then, it is still necessary to discriminate whether factors such as rock
deformability, turbulence, etc. may account for variable and/or large damping coefficients relative to the predictions of (1). For typical porous
medium-shear moduli of 10 GPa, corresponding to a shear wave velocity Vs ∼ 2000 m s−1, or more, the effect of rock deformability on the
damping coefficient is less than 10 per cent (Fig. 12). Yet, the elasticity of pipes with finite thickness, not treated by the model, enhances the
effective deformability, i.e. it reduces the effective stiffness of the material, and may give rise to further dissipative wave modes (e.g. Kurzeja
et al. 2016). Non-ideal borehole geometries, i.e. variable casing diameter or changing orientation (e.g. Groß Buchholz), and pipe connections
(e.g. in Freiberg set-up), might cause turbulence during steady or pulsatile flow (Najjari & Plesniak 2018) and thus increase the damping
coefficient in comparison to (1). Using damping coefficients increased by turbulence or other effects in (2) leads to an overestimation of the
inverted effective permeability.

Avoiding aliasing problems when recording free-pressure oscillations requires sampling rates that exceed the typical values used during
hydraulic testing of boreholes. The resolution of the acquisition tool should be adjusted to at least capture the expected fundamental frequency
of the system. For example, instead of 2 Hz, Audouin & Bodin (2007) should have used a sampling frequency, higher than 6 or 12 Hz to
capture the fundamental frequency of the 130 m long borehole for both ends closed or one open, respectively.

The free pressure oscillations can be inverted using (2) when the fluid flow in the porous medium or the fractures is governed by viscous
forces. An extension of the boundary condition of the radial velocity to account for flow beyond a purely diffusive process, i.e. account
for the inertia effects on the flow in the conduits, is possible using the theory of ‘dynamic permeability’ for a homogenous porous medium
(Johnson et al. 1987) or a radial fracture (Tang et al. 1989). The critical frequency ωc = μf/(ρf R2

p) discriminates whether inertia effects
are relevant; for a conduit with a characteristic size Rp (Biot 1956), viscous effects are dominant when ω � ωc. For the frequencies in our
observations ranging from 10−2 to 100 s–1 to fall in the inertia-controlled regime, the characteristic conduit size had to exceed Rp > 10−3 m
by large (as is true for the injection tubes and boreholes). When fractures are opened during stimulation they may reach apertures close to this
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Figure 13. (a) Comparison of damping coefficient and frequency from dispersion relations for fluid flow waves in tight boreholes (1), in leaky boreholes
accounting for (2) and neglecting wall friction (Tang et al. 1991b). (b) Damping coefficient and frequency from the dispersion relation for fluid flow in a radial
fracture (Tang et al. 1989) with the two indicated apertures.

order of magnitude and a treatment involving ‘dynamic permeability’ may have to be considered. Yet, realistic homogeneous porous media
(e.g. Nishiyama & Yokoyama 2017) and fractures below reopening pressure do not exhibit pore sizes or apertures in this range, respectively.
Thus, we infer that the conventional diffusion approach (2) will typically suffice for an evaluation of spectral characteristics of free pressure
oscillations.

5.2 Comparison of dispersion relations for waves in leaky boreholes

The derived dispersion relation (2) for flow waves in leaky boreholes with rigid walls that includes viscous losses by wall friction applies for
flow waves with any frequency. The frequencies of the standing waves analysed here are relatively low compared to frequencies, for which
the actual propagation of flow waves can be observed. Frameworks focusing on the propagative character are the classical theory of Stoneley
waves in permeable (Tang et al. 1991b; Ou & Wang 2019) and fractured boreholes (Tang & Cheng 1989; Tang et al. 1991a), and the recently
presented ‘selective resonance for radial fractures’ (Liang et al. 2017). The dispersion relation of Stoneley waves in an axially fractured
borehole, somewhat inconsistently, employs the dispersion relation derived for a radial fracture to describe the leakage contribution (Tang &
Cheng 1989). The analytical dispersion relations for Stoneley waves in permeable boreholes account for the effect of viscous forces on the
fluid flow in the porous medium (or the fractures) but neglect the effect of the viscous interaction of the fluid and the borehole wall and, in
contrast to our solution for leaky boreholes (2), give damping coefficients below the tight-borehole limit regardless of frequency (Fig. 13a).
Thus, care must be taken when using the dispersion relations for Stoneley waves to derive hydraulic parameters from propagating waves (e.g.
Tang et al. 1991b) when the damping coefficients are below the tight borehole limit.

For a borehole intersected by a radial fracture, only transmission and reflection coefficients were determined (Tang & Cheng 1989; Tang
1990). Liang et al. (2017) considered a situation where the disruption of the borehole constituted by a radial fracture governs the oscillation
behaviour of the entire system. Then, the damping coefficient and the frequency of the fluid-flow wave in the borehole may be governed by
the dispersion relation for the fluid wave in the radial fracture (e.g. Tang & Cheng 1989). The presence of a radial fracture in a borehole might
lead to a pressure node and thus to an increase in frequency comparable to the effect of holes in flutes (Wolfe et al. 2001). The dispersion
relation for fluid-flow waves in a radial fracture (Tang & Cheng 1989; Liang et al. 2017) yields a decrease in damping with increasing aperture
(Fig. 13b), physically plausible considering the fracture alone. For the system ‘borehole-fracture’, however, increasing aperture corresponds
to an increase in leakage that in turn should manifest in increasing damping, as true for the dispersion relation for leaky boreholes (2).
Obviously, the coupling condition between fracture and borehole deserves further attention.

6 C O N C LU S I O N S

We derived a dispersion relation for flow waves in boreholes penetrating permeable media, assessed it by complementary numerical simulations,
and used it to constrain hydraulic properties from an analysis of the spectral characteristics of free pressure oscillations recorded during
hydraulic tests. The flow-wave dispersion relation presented in this work is an extension of the solution for tight boreholes by an account for
leakage into hydraulic conduits at the borehole wall, albeit strictly true only for homogeneous media due to the imposed radial symmetry and
the underlying fluid-volume balancing between borehole and intersected hydraulic conduits. The current version of the extended dispersion
relation restricts to the dominance of viscous forces for the pressure propagation in the porous medium, in accord with the range of actually

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/232/3/1713/6670791 by guest on 02 D

ecem
ber 2022
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observed frequencies, but an extension towards dynamic permeability is possible. Objectives for future work lie in addressing changes in
borehole radius and deviations of the flow field in the borehole from radial symmetry associated with leakage into fractures.

The dispersion relations for infinitely long boreholes do not constrain the frequency at which a standing fluid-flow wave oscillates. Our
numerical simulations for boreholes with finite length showed that length is the dominant factor for frequency; irrespective of whether the
borehole is tight, fully or partial leaky, the conventional organ–pipe relations apply apart from frequency reductions due to damping, by
leakage or wall friction.

The determination of hydraulic properties using the derived analytical solution is limited towards the low end by permeability around
∼10–18 m2 for typical borehole radii between 0.038 and 0.18 m. This limitation in resolution reflects that leakoff is just one of at least
two dissipation processes. The numerical results demonstrate that the free oscillations can be overdamped for a typical borehole radius
when permeability values are around ∼10–13 m2. However, when the wall friction contribution is high, i.e. for a borehole with small radius,
overdamping can occur at lower permeabilities than that value. Thus, the window of permeability values that can be inverted from free pressure
oscillations comprises about 5 order of magnitudes. The inverted permeabilities constitute effective values, representative of the borehole’s
transmissivity, whose conversion toward real permeability values requires knowledge of the length of the leaky sections or of details of the
fracture geometry.

The hydraulic tests of various field campaigns were performed with set-ups including double-packer intervals and cased wells with
perforation or open-hole sections. The oscillations recorded in these tests exhibited frequencies and damping coefficients varying from 10−2

to 100Hz and 10−3 to 5 × 100 s–1, respectively. The observed frequencies were in good agreement with the nominal eigenfrequency of waves
in tubes with corresponding length and end condition. The damping coefficients from numerical simulations and field campaigns were always
similar to or higher than the analytical limit defined by wall friction in a tight borehole. Thus, this limit allows for the identification of the
physical processes controlling the oscillations, that is viscous losses between the fluid and the borehole wall or fluid flow from the borehole
to the porous medium. Effective permeability values inverted from the proposed dispersion relation for leaky boreholes fall in a plausible
range between 10–18 and 10–14 m2. In particular, the use of coiled tubings might be problematic since it causes significant wall friction, whose
contribution may thus dominate the damping coefficient. For shallow boreholes, the eigenfrequency of the free pressure oscillations might be
higher than the Nyquist frequency of the data-acquisition systems typically used for hydraulic tests, leading to aliasing problems.

The strength of the proposed method lies in the simplicity of monitoring a single perturbation of flow and recording for tens of seconds
the pressure response with sufficient sampling frequency. Changes in damping coefficients in the course of a stimulation operation are a strong
indication that the corresponding oscillations actually bear information on hydraulic properties of the penetrated formation. In these cases,
the ‘incidental’ data from free pressure oscillations provide ‘real-time’ evidence for fracture evolution during stimulation tests. Likewise, they
can provide constraints on the dependence of hydraulic parameters on mean fluid pressure. The presented workflow could as well be applied
to the evaluation of hydraulic properties of underdamped oscillations in slug tests.
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A P P E N D I X A

A.1 Relation between damping and dispersion relations

A pressure wave propagating in the negative z-direction is described by

pw (z, t) = P0ei(ωt+kz), (4)

where P0 is the amplitude, k is the wavenumber and ω is the angular frequency, related to the wave velocity, c, by k = ω/c. Introducing a
complex-valued wave number kz = kRe + ikIm, with real, kRe, and imaginary part, kIm, gives

pw (z, t) = p0e−kImzei(kRez−ωt), (5)

that is propagation is controlled by the real part yielding an effective propagation velocity ceff = ω/kRe, and the damping, that is the amplitude
reduction with travelled distance, is controlled by the imaginary part corresponding directly to the spatial damping coefficient δ∗ = kIm.

For intrinsic attenuation, that is energy loss related to a uniform material property such that every local oscillation behaves as its
neighbours, the damping for a travel distance of one wavelength is identical to the local damping during one period T0, and thus

e−δ∗λ = e−δT0 (6)

giving the relation

δ = δ∗ λ

T0
= kImceff = ω

kIm

kRe
(7)

between the two measures of damping, δ∗ (m–1) and δ (s–1).

A P P E N D I X B

B.1 Dispersion relation for fluid flow waves in leaky boreholes

We seek wave-like solutions of the continuity and the Navier–Stokes equation for the fluid pressure in the borehole, pw(r, z, t), and the fluid
velocity, which comprises an axial, u(r, z, t) and a radial, v(r, z, t) component:

pw(r, z, t) = Pw(r )e−i(ωt−zkz ), (8)

u(r, z, t) = U (r )e−i(ωt−zkz ), and (9)

v(r, z, t) = V (r )e−i(ωt−zkz ), (10)

where r and z denote the radial and axial coordinates, respectively, and t is the time. In the long-wavelength approximation, the amplitudes
Pw(r ), V (r ) and U (r ), found by Bernabé (2009), are

Pw(r ) = P0, (11)

U (r ) = C(ω)J0(
√

2ir/ν) + P0kz

ρfω
, and (12)

V (r ) = −C(ω)

√
2iμf

νρω
kz J1(

√
2ir/ν) + P0

ν2
iμfr

ω2 − c2
0k2

z

ρ2
f ω

2c2
0

, (13)

where the amplitude of the pressure wave is P0 and

C(ω) = − P0

ρfωJ0(
√

2i R/ν)
kz(ω) (14)

is found by requiring the axial fluid velocity (12) to be zero at the solid–fluid interface (r = R). These amplitudes represent general solutions
still valid when assuming a boundary condition at the borehole wall different from the one employed by Bernabé (2009). Unlike for the
dispersion relation for tight boreholes (1) that results from imposing the radial fluid velocity to be zero at the solid–fluid interface, we define
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a leakage condition for the radial velocity component using Darcy’s law, that is

V (R) = −κeff

μf

∂pf

∂r
, (15)

where pf is the fluid pressure in the rock penetrated by the borehole and κeff the rock’s effective permeability, identical to the intrinsic or
Darcy permeability for a homogeneous porous medium.

We assume that the fluid pressure in the porous medium exhibits the same wave-like character as the borehole pressure (8), that is

pf (r, z, t) = Pf (r )e−i(ωt−zkz ) (16)

with an amplitude Pf (r ≥ R) depending on radial distance from the borehole. Laminar, uncoupled, purely radial flow in the porous medium
is described by a diffusion equation

∂pf

∂r 2
+ 1

r

∂pf

∂r
+ ∂2 pf

∂z2
= 1

D

∂pf

∂t
, (17)

with the hydraulic diffusivity of the medium, D = κeff/(μf seff ), which comprises the effective specific storage capacity seff of the rock
penetrated by the borehole. The hydraulic diffusivity determines how far a pressure perturbation reaches into a permeable medium in a
specific time. Inserting ansatz (16) in (17) gives the ordinary differential equation

dPf

dr 2
+ 1

r

dPf

dr
+

(
k2

z − iω

D

)
Pf = 0 (18)

with the general solution

Pf (r ) = M I0

(
r

√
k2

z − iω

D

)
+ N K0

(
r

√
k2

z − iω

D

)
(19)

involving the modified Bessel functions of zero order of first I0(.) and second kind K0(.) and constant unknown factors M and N . Assuming the
permeable porous medium to have an infinite radial extension on the timescale of the perturbation, the fluid pressure obeys Pf (r → ∞) → 0
requiring M = 0. The continuity in pressure at the borehole wall,

Pf (R) = Pw(R) = P0, (20)

constrains the second constant N leading to

Pf (r ) = P0

K0

(
r
√

k2
z − iω

D

)
K0

(
R
√

k2
z − iω

D

) . (21)

The result for the fluid pressure in the porous medium (21) can be used to calculate the radial fluid velocity at the borehole wall using
Darcy’s law (15)

V (r = R) = −κeff

μf
P0

√
k2

z − iω

D

K1

(
R
√

k2
z − iω

D

)
K0

(
R
√

k2
z − iω

D

) , (22)

where K1(.) denotes the modified Bessel function of second kind and first order. Finally, equating (13) for r = R to (22), the dispersion
relation of a fluid-flow wave experiencing wall friction in a leaky borehole is implicitly given by (2).

For a homogeneous permeable medium, the radial velocity (15) of the borehole fluid is identical to the Darcy velocity in the rock and
the effective permeability is identical to the intrinsic or Darcy permeability, κeff = κ . Heterogeneity, that is variations in hydraulic properties
along the borehole, perturbs the velocity field in the borehole. We simplify the evaluation of the boundary condition (15) by solely accounting
for the ‘averaged’ effect of fractures or open-hole sections on the volume balance between them and the borehole at r = R:

AwV (r = R) = −AF,ohs
κF,ohs

μf

∂pf

∂r

∣∣∣∣
r=R

, (23)

where Aw = 2π RL denotes the area of the borehole with length L , AF,ohs and κF,ohs represent the cross-sectional area and permeability of
the fracture(s) or the permeable open-hole section. For partial leakage into a homogeneous open-hole section, the cross-sectional area is
Aohs = 2π RL leaky, with the length of the permeable section L leaky, and (23) yields

V (R) = − L leaky

L

κ

μf

∂pf

∂r

∣∣∣∣
r=R

. (24)

We assume the cubic law to hold for fractures, i.e. the fracture permeability relates to aperture as κF = w2/12 (e.g. Zimmerman and
Bodvarsson 1996). For our simplistic averaging (23) that ignores the actual deviations of flow lines in the borehole from a radial direction,
two diametrically opposite axial fractures, as for example created by hydraulic fracturing (Hubbert & Willis 1957), of aperture w and length
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LF, that is AF,ax = 2wLF, give

VF,ax(R) = − w3 LF

12π RLμf

∂pf

∂r

∣∣∣∣
r=R

, (25)

and a single radial fracture, that is AF,rad = 2π Rw, gives

VF,rad(R) = − w3

12Lμf

∂pf

∂r

∣∣∣∣
r=R

. (26)

A P P E N D I X C

C.1 Signal Processing and Spectral analysis

Pairs of frequency and damping coefficient were gained from decomposing observed oscillations into their spectral components. Extracting
the fundamental mode was performed by three signal-processing methods, that is Prony analysis (PA), fast Fourier transformation (FFT)
and multiple-filter-technic (MFT). Prony analysis is a method for estimating spectral components of a signal by modelling sampled data as
a linear combination of exponential functions (Lobos et al. 2003). The application of this method requires selecting the order (number of
exponentials). The multiple-filter technic is a method for analyzing multimode dispersed signals utilizing Fourier transformation for successive
sections of the signal, that is employing moving windows. The method yields amplitudes and phases as a function of frequency (Dziewonski
et al. 1969) and constrains the persistence of frequency components through the duration of a signal.

For the field tests, we performed the spectral analysis on pressures recorded by the sensors installed uphole (data from Horstberg, Groß
Buchholz, KTB and Freiberg) and/or downhole (data from Freiberg and Hong Kong); for the numerical simulations, we employed pressures
recorded at the center of the boreholes at half their heights. Processing of the pressure records consisted of two steps. In the first step, we
used FFT and/or MFT to retrieve an estimate of the dominant frequency of the oscillation. Then, we selected the oscillatory contribution,
characterized by frequency and damping coefficient, identified by Prony analysis corresponding to the dominant frequency obtained in the
first step. The uncertainty of the spectral components was calculated from changes in the spectral components associated with varying the
order, that is the number of exponential functions used to fit the signal, during the Prony analysis.

A P P E N D I X D

D.1 Models

The numerical simulations were performed with the software COMSOL Multiphysics, a commercial finite element solver for partial differential
equations, here the Navier–Stokes equations for a compressible fluid including advective inertia terms, neglected in the derivation of (1)
and (2), and assuming the Stokes condition for bulk viscosity, that is the fluid’s compressibility βf is constant. Fluid compressibility was
prescribed through a pressure-dependent density according to

ρ = ρf (1 + βf p) . (27)

We used parameters corresponding to water in the simulations (Table 1).
All simulated boreholes were embedded in a rigid solid, and had an open top and a closed bottom. For the tight model, the borehole

lengths (L) were 1, 4, 8, 100, 400 and 1000 m, while we restricted to 4, 100 and 400 m for the full-length leaky and partial-length leaky
models. The permeable section of partial-length leaky boreholes was located at the end of the well with a height spanning between 0.1 and 80
per cent of the entire length of the borehole. The axial ‘no-slip boundary’ was uniformly applied. The walls of tight boreholes corresponded
to a no-flow boundary also for the radial direction. For leaky boreholes, fluid flow from the borehole into the porous medium was specified
by the boundary condition (15) for the radial velocity component at the borehole wall. This boundary condition was the source term for the
radial pressure diffusion into the isotropic porous medium following (18). We considered permeability values between 10−18 and 10−13 m2.
The leaky boreholes had a fixed apparent porosity of φapp = 1%, corresponding to a specific storage capacity of s � 4.2 × 10−12 Pa–1. Thus,
diffusivity differences between simulations are solely controlled by permeability.

We used a range of meshes whose element size was controlled by the automatic meshing generator of COMSOL. The combination of
polynomial orders of the interpolation functions (Pv and Pp) for the velocity (v) and pressure (p) field affects the characteristics of numerical
free pressure oscillations. For two polynomials of first order (P1v + P1p), only tested for tight boreholes, the damping coefficients exceed
those gained for two polynomials of second order (P2v + P2p) and those predicted by the analytical solution (1), see Fig. D4c. However, we
found no difference in spectral components when selecting a polynomial of second order for the velocity and either taking a polynomial of
first or second order for the pressure field (Table 4). Thus, in view of computational efficiency, we used interpolation functions of the type
(P2v + P1p).

Velocity and pressure were set to zero at the initial time. The pressure perturbation was realized by a rapid impulse prescribed at the
top of the water column using a step function with a height of 1 Pa and a rise time of ∼1/ f0, where f0 ∼ c0/4L represents the nominal
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Figure D1. Effect of mesh size on the free pressure oscillations in tight boreholes (length 1 m) for two different ratios of borehole radius to viscous skin depth.
The extremely coarse (black), coarse (red) and fine (green) meshes have two types of elements (rectangular at the borehole wall and triangular everywhere
else) with varying size. The purely triangular mesh (blue) is composed of uniform triangles.

eigenfrequency of a tight borehole of length L with one open end. Eigenfrequencies of f0 ∼ 387, 96, 48, 3.8, 0.96, and 0.38 Hz correspond
to the modelled lengths of L =1, 4, 8, 100, 400, and 1000 m, respectively. The radius of the tight boreholes ranged from 0.4 mm to 0.1 m
and from 0.01 m to 0.18 m for the leaky boreholes. In all simulations, the viscous skin depth associated with the fundamental frequency of
the excited fluid-flow waves is one to three orders of magnitude smaller than the radii of the boreholes.

D.2 Effect of mesh density on spectral components of pressure oscillations

We varied the mesh type and size in a suite of simulations for two boreholes with the same length of 1 m but radii of 0.001 and 0.004 m,
corresponding to R/ν= 35 and 140, respectively, where the viscous skin depth is calculated using the fundamental frequency. The first type
of mesh consisted of triangular elements in the interior of the borehole and rectangular elements close to the borehole wall; the size of the
elements for this type of mesh becomes finer towards the borehole wall (Fig. D1). The second type of mesh consisted of triangular elements
with uniform size throughout. For either type, the element size is controlled in COMSOL by an automatic meshing generator. For the first
type, it offers categories from ‘extremely coarse’ to ‘extremely fine’; for the second type, the automatically chosen size of the triangular
elements can be reduced by a scale factor.

The radial length of the first element close to the borehole wall re changed from 3 × 10−5 to 2.5 × 10−4 m for both considered
mesh types (Table 6). The pressure records exhibit significant mesh-dependence for the borehole with the large radius but less so for
the borehole with the small radius (Fig. D1, Table 6). For both borehole radii and all mesh sizes and types, the frequencies deduced
by spectral analysis, however, match with the conventional fundamental frequency and the harmonics for a borehole with one open end,
fm = (2m + 1) f0; the harmonics to order three deviate by less than 3 per cent from the odd multiples of the fundamental frequency
(Fig. D2a).
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Figure D2. (a) Fundamental frequency and associated harmonics, and (b) damping coefficients normalized by the theoretical damping coefficient given by (1)
as a function of the ratio of the radius of the first mesh element close to the borehole wall (re) to viscous skin depth (ν) from free pressure oscillations simulated
with different mesh type and element size for boreholes with a length of 1 m and radii of 0.001 and 0.004 m. The colour bar represents the ratio of the radius
of the borehole to the viscous skin depth. In a), dashed red lines indicate the nominal frequencies of standing waves in a borehole with one open end; in b), the
dashed red line indicates consistency between theory and numerical modelling.

Figure D3. Variation in axial velocity distribution over the course of damped oscillations with a fundamental frequency of 380 Hz (period of about 0.0026 s)
for a borehole with 1 m length and (a) R = 0.001m and (b) R = 0.004m using a fine mesh (automatically generated by COMSOL). The extension of the
viscous skin depth of ν = 2.9 × 10−5 m is represented in magenta colour.

The overestimation of the numerical damping coefficients in comparison to the analytical solution is dominated by the ratio re/ν but is
independent of the type of element close to the borehole wall, i.e. triangular or rectangular. The ratio of the numerical damping coefficient
of the fundamental mode and the harmonics to the theoretical predictions given by (1) tends to one when the radial extension of the element
closest to the borehole wall does not significantly exceed the viscous skin depth, i.e. re/ν ∼ 1 (Fig. D2b). For a fixed re, the ratio of re/ν

is higher for viscous skin depth associated to the harmonics than to the fundamental mode, therefore, the numerical damping coefficient
harmonics significantly differ from the analytical prediction. The overestimation in damping coefficient is also affected by the ratio R/ν likely
reflecting that not only the size of the element nearest to the borehole wall but the size of all elements changes with absolute borehole radius
(Fig. D2b).

The radial velocity profile is expected to be piston-like when viscous skin depths are much smaller than the borehole radius (e.g. Kurzeja
et al. 2016). The associated steep velocity decline towards the borehole wall was well resolved for a small borehole radius of 0.001 m, as
indicated by its variability during an oscillation period (Fig. D3a). In contrast, the velocity profiles in a borehole with a four times larger
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Figure D4. Pressure oscillations resulting from numerical simulations for tight boreholes with a length of 4 m and radii as indicated by the colour bar: (a)
time-series; (b) amplitude spectrum. (c) Comparison of the damping coefficients from numerical modelling, that is using the polynomial interpolating functions
P2v + P2p and P1v + P1p, and analytical solution as a function of the ratio of the borehole radius and viscous skin depth for tight boreholes with lengths
indicated by the colour bar. The black line is a second order polynomial to the data gained for the polynomial interpolation P2v + P2p.

borehole radius (and correspondingly larger re) are solely controlled by mesh size and do not vary during a period (Fig. D3b). Consequently,
the mesh size determined the apparent viscous skin depth leading to an overestimation of the damping coefficient.

D.3 Numerical results

D.3.1 Tight boreholes

The simulations for boreholes in a rigid and tight medium document a positive correlation between the radius of the borehole and the amount
of time until the underdamped oscillation vanishes (Fig. D4a). Spectral analysis of the numerical results reveals that the pressure oscillates
with the nominal eigenfrequency of a standing wave in a tube with one open end f0 = c0/(4L) for small values of damping coefficients, that
is 2π f0 � δ. With increasing damping coefficient, for example due to a reduction in borehole radius, frequency decreases by up to 8 per cent
compared to the nominal eigenfrequency (Fig. D4b and Table 3). The damping coefficients are overestimated—the more the larger R/ν—due
to the described mesh problems (Fig. D4c).

D.3.2 Leaky boreholes

The numerical results for leaky boreholes are ‘consistent’ with those for tight boreholes in the sense that the frequency-damping relations
for finite permeability converge to the ones for zero permeability. For leaky boreholes, amplitudes of the pressure oscillations decrease and
damping coefficients increase with increasing permeability (Figs D5a and b). For the simulated full-length leaky boreholes (L leak/L = 1), the
frequency of the free pressure oscillations does not deviate much from that of tight borehole with the same length but slightly falls below the
nominal eigenfrequency with increasing permeability (see Table 4 the first four rows). Damping coefficients from the numerical simulations
are higher than the values predicted by eq. (2); the difference between both increases with the increase of R/ν values (indicative of mesh
problems) and/or permeability (Fig. D6).
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Figure D5. Pressure oscillations resulting from numerical simulations for leaky boreholes (length 100 m, radius 0.01 m, apparent porosity 1 × 10−2) using
the polynomial interpolating functions P2v + P2p: (a) time-series; (b) amplitude spectra. Permeability is indicated by the colour bars and the length of the
leaky section by the indicated ratio L leaky/L . The vertical red line in (b) represents the nominal eigenfrequency.

Figure D6. Ratio of damping coefficients from numerical simulations to theoretical predictions for leaky boreholes according to (2) as a function of the
parameter L leaky/L for different ratios of borehole radius and viscous skin depth (R/ν) reflecting differences in absolute length, and permeability values κ .
The viscous skin depth is calculated using the fundamental frequency. Open and closed symbols represent simulations with polynomial interpolating functions
P2v + P2p and P2v + P1p, respectively, for velocity and pressure.

For partial-length leaky boreholes (10−3 < L leak/L < 1), the reduction in frequency from the nominal eigenfrequency depends on the
length of the leaky section in addition to permeability as observed for full-length leaky boreholes (Fig. D5b). The damping coefficients
increase with an increase in relative length of the interval, permeability, and the ratio R/ν (Fig. D6). However, the damping coefficients
remain within the numerical limits corresponding to a tight (L leaky/L = 0) and a full-length leaky borehole(L leaky/L = 1) for a given R/ν

value but not within the analytical limits because of the overestimation of damping due to the mesh problems (Fig. D7).
In leaky boreholes, overdamping, that is monotonous pressure decay, occurred for combinations of high permeability and long length

of the leaky section and the occurrence is fairly consistent with the condition known for a harmonic oscillator δ ≥ 2π f0 (Figs D5a and b).
The permeability beyond which overdamping occurs depends on the contribution of wall friction. For a borehole with a radius of 0.18 m and
a length of 1000 m, an underdamped oscillation occurred when the permeability was higher than κ = 10−13 m2. In contrast, for a borehole
with the same length of 1000 m but a radius of only 0.01 m, the overdamping occurred for permeabilities above κ = 10−17 m2. The borehole
with the small radius is already close to overdamping from the viscous dissipation alone; little additional damping due to leakage suffices to
reach overdamping.

D.4 Implications for permeability determination

The numerical modelling confirmed that frequency and damping coefficient of free pressure oscillations contain information about the
permeability of the medium penetrated by a borehole. For a full-length leaky borehole, the inversion of spectral components using (2) will
result in a permeability κinverted that coincides with the permeability κ of the porous medium. Inverted permeability should scale with the
length of the leaky section of the borehole according to (3) when the borehole has partial leakage. Yet, the inverted permeability values surpass
the values prescribed in the numerical model by up to 3 orders of magnitude as a consequence of the overestimation in damping coefficients;
the larger the mesh size in comparison to the viscous skin depth the larger the overestimation (Fig. D8).
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Figure D7. Damping coefficients of free pressure oscillation from numerical simulations as a function of relative length of the leaky interval. Length and
radius of the borehole and permeability of the medium are indicated by the legend.

Figure D8. Ratio of effective permeability derived from spectral components of simulated free pressure oscillations, i.e. using (2), to actual permeability
prescribed in the numerical model in COMSOL as a function of the relative length of the leaky section L leaky/L . The colour bar indicates the ratio of borehole
radius and viscous skin depth R/ν. The dashed black line represents the theoretical line according to (3). The vertical magenta lines and rectangle indicate the
L leaky/L and R/ν values of the field observations.

A P P E N D I X E

E.1 Axial and radial Strouhal numbers for fluid-flow waves in tight boreholes

In the dimensionless form of the Navier–Stokes equation, the terms related to inertial forces comprise the time derivative of the velocity field
multiplied by the Strouhal number and the advective term. The Strouhal number expresses the ratio of the local acceleration of the flow to the
advective acceleration and is given by

St= l̃ f

ṽ
, (28)

where l̃is the characteristic length and ṽ is a characteristic velocity of the flow rather than the propagation velocity of the flow waves. The
fluid motion associated with the pressure oscillation comprises an axial and a radial component and thus a Strouhal number for each velocity
component. We used the maximum value of the fluid velocity components to calculate a lower bound of the Strouhal numbers. Using the
maximum axial velocity U (r = 0) = P0kz/ρfω we obtain:

Staxial=c2
0ρf

n P0
, (29)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/232/3/1713/6670791 by guest on 02 D

ecem
ber 2022



1740 V.A. Jiménez Martı́nez and J. Renner

Figure E1. Real part of the radial velocity in a tight borehole calculated for different fundamental frequencies ( f0 = c0/4L) as a function of radial position for
different borehole radii and lengths (colour bar) used in the numerical simulations. The sharp velocity decays close to the borehole radius reflects the imposed
no-slip boundary condition.

with n = 2 or n = 4 for a closed or an open end, respectively. The maximum value of the radial velocity is more difficult to obtain analytically,
so we took the maximum value of the real part of the radial velocity (15) evaluated for the radius and frequencies used in the numerical
simulations (Fig. E1).

A P P E N D I X F

F.1 Effect of end condition on the frequency of flow waves in tight boreholes

A flow wave traveling in a filled borehole with finite length will be reflected at each end. The superposition of the waves travelling in opposite
direction gives rise to standing waves. The condition of the two ends, here addressed as upstream and downstream for distinction, represents
a boundary condition for the flow rate. The amplitudes of the upstream (U) and downstream (D) flow rates are not the same due to storage
effects in the borehole and are given by eqs (53) and (54) in Bernabé (2009) as

QU = −i
π R2

ρc

PU cos
(

ωL
c

) − PD

sin
(

ωL
c

) (
2J1(κ R)

κ J0(κ R)
− 1

)
(30)

and

QD = −i
π R2

ρc

PU − PD cos
(

ωL
c

)
sin

(
ωL
c

) (
2J1(κ R)

κ J0(κ R)
− 1

)
. (31)

In our field tests, the closure of the valve at the wellhead or the injection line excites the oscillation and corresponds to a closed-end
condition with

Q(t, z = 0) = QUeiωt = 0. (32)

The opposite end might correspond to anything between open or closed condition depending on the specific problem, for example the
double-packer interval at the end of a coiled tubing is not a closed end but neither truly open. As common in hydraulic laboratory experiments,
we address this opposite end as the downstream and characterize it by its storage capacity SD, with SD → ∞ for an open end and SD → 0 for
a closed end. The boundary condition for the downstream, see appendix A in Bernabé (2009), is then given by

Q(t, z = L) = QDeiωt = −iωSD PDeiωt . (33)

Substituting (32) into (30) and (33) into (31), two expressions for the pressure–amplitude ratio are obtained:

QU = −i π R2

ρc

PU cos( ωL
c )−PD

sin( ωL
c )

(
2J1(κ R)
κ J0(κ R) − 1

)
= 0

⇒ PD
PU

= cos
(

ωL
c

) (34)

and

QD = −i
π R2

ρc

1 − PD
PU

cos
(

ωL
c

)
sin

(
ωL
c

) (
2J1(κ R)

κ J0(κ R)
− 1

)
= −iωSD

PD

PU
.

(35)
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Combining (34) and (35) and using the expression (1), we find

ωL

c

[
tan

(
ωL

c

)
+ SDρc2

0

π R2

ω

c

]
= 0, (36)

Relation (36) is satisfied only for real arguments in the tangent function; the possible fluid wave velocities depend on the storage capacity
of the downstream reservoir. Specifically, for the cases of open and closed borehole, (36) gives

tan

(
ωL

c

)
= −

{
0 for SD = 0 for closed end
∞ for SD = ∞ for open end

. (37)

Eq. (36) is satisfied when

tan

(
ωL

c

)
=

{
0 ⇒ ωL

c = mπ ⇔ f̂ m = mc
2L = m f̂ 0

∞ ⇒ ωL
c = 2m+1

2 π ⇔ fm = (2m+1)c
4L = (2m + 1) f0

, m = 1, 2, 3, ... (38)

corresponding to the classical organ–pipe relations:
∗P2v + P1p.
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