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Abstract

Orbital systems are often self-organized and/or characterized by harmonic relations. Inspired by music theory, we
rewrite the Geddes and King-Hele (QJRAS, 24, 10–13, 1983) equations for mirror symmetries among the distances
of the planets of the solar system in an elegant and compact form by using the 2/3rd power of the ratios of the
semi-major axis lengths of two neighboring planets (eight pairs, including the belt of the asteroids). This metric
suggests that the solar system could be characterized by a scaling and mirror-like structure relative to the asteroid
belt that relates together the terrestrial and Jovian planets. These relations are based on a 9/8 ratio multiplied
by powers of 2, which correspond musically to the interval of the Pythagorean epogdoon (a Major Second) and its
addition with one or more octaves. Extensions of the same model are discussed and found compatible also with
the still hypothetical vulcanoid asteroids versus the transneptunian objects. The found relation also suggests that
the planetary self-organization of our system could be generated by the 3:1 and 7:3 resonances of Jupiter, which
are already known to have shaped the asteroid belt. The proposed model predicts the main Kirkwood asteroid gaps
and the ratio among the planetary orbital parameters with a 99% accuracy, which is three times better than an
alternative, recently proposed harmonic-resonance model for the solar system. Furthermore, the ratios of neighboring
planetary pairs correspond to four musical “consonances” having frequency ratios of 5/4 (Major Third), 4/3 (Perfect
Fourth), 3/2 (Perfect Fifth) and 8/5 (Minor Sixth); the probability of obtaining this result randomly has a p < 0.001.
Musical consonances are “pleasing” tones that harmoniously interrelate when sounded together, which suggests that
the orbits of the planets of our solar system could form some kind of gravitationally optimized and coordinated
structure. Physical modeling indicates that energy non-conserving perturbations could drive a planetary system into
a self-organized periodic state with characteristics vaguely similar of those found in our solar system. However, our
specific finding suggests that the planetary organization of our solar system could be rather peculiar and based on
more complex and unknown dynamical structures.

Keywords: Solar system; orbital self-organization; mirror symmetries; orbital resonances; music and astronomy.

Note: The present copy slightly updates the published paper with the addition of Table 7 and relative com-
ment on pages 15 and 16, with the artwork of the solar system depicted in Figure 8 (page 19) and the Appendix
on page 20.
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1 Introduction

Since ancient times the stability of the solar system, its
regularities, and the movements of its planets have at-
tracted the attention of astronomers and philosophers
because their orbital revolutions appeared to be related
by simple proportions (Haar, 1948; Stephenson, 1974;
Godwin, 1992). This observation yielded the under-
standing that solar and lunar systems could be char-
acterized by harmonic resonances, which are usually
the result of self-organizing gravitational or tidal pro-
cesses yielding to long-term stable planet and moon or-
bits (Aschwanden, 2018; Moons and Morbidelli, 1995).
In fact, planetary circular orbits are dynamically unsta-
ble, unless their mutual orbital periods fall into harmonic
whole number ratios called “orbital commensurabilities”
(McFadden et al., 1999; Peale, 1976; Pakter and Levin,
2018).

For example, within our solar system, 5 orbital peri-
ods of Jupiter approximately correspond to 2 periods of
Saturn, 13 orbital periods of Venus approximately cor-
respond to 8 periods of the Earth, and Pluto makes two
orbits for every three of Neptune (cf: Scafetta, 2014a).
In addition, there are the well-known 1:2:4 resonances
of Jupiter’s moons Ganymede, Europa and Io, which was
studied by Pierre-Simon Laplace (1749 – 1827), and the
primary gaps in the asteroid main-belt at the 4:1, 3:1,
5:2, 7:3, 2:1 mean-motion resonances between the as-
teroids and Jupiter, which was first noticed in 1866 by
Daniel Kirkwood (1814 – 1895) (Moons and Morbidelli,
1995; Moons et al., 1998).

The Trappist-1 solar system is also a very peculiar
exoplanetary example. It is made of a dwarf red star
and seven earth-size planets labeled b, c, d, e, f, g,
and h (three are in the habitable zone) whose sta-
ble orbits are characterized by three-body Laplace-type
near-resonances (Gillon et al., 2017; Luger et al., 2017;
Tamayo et al., 2017). The seven orbital periods are:
1.511, 2.422, 4.049, 6.101, 9.207, 12.352, and 18.773
days, respectively (Agol et al., 2021). Thus, the pe-
riod ratios between adjacent planet pairs (c/b, d/c, e/d,
f/e, g/f and h/g) are 1.603, 1.672, 1.507, 1.509, 1.342,
1.520, respectively. These ratios are very close to the fol-
lowing integer ratios: 8:5, 5:3, 3:2, 3:2, 4:3, 3:2, respec-
tively, with a mean relative error of 0.6%, which is the
longest known series of near-resonant exoplanets. The
planetary resonances of the Trappist-1 system’s motion
are so accurate and peculiar that they were translated
into music (Chang, 2017; Russo, 2018).

On a wider perspective, gravitational self-organization
and harmonic resonances, and more specifically the
planetary invariant inequalities involving planetary con-
junctions and their beats, generate complex planetary
synchronization structures in the solar system that ap-
pear to modulate also solar variability and climate
change on Earth. These phenomena are currently un-
der study by several authors (e.g.: Beer et al., 2018;

Charvatova, 1997; Scafetta, 2014b; Scafetta et al., 2016;
Scafetta, 2020; Stefani et al., 2021; Tattersall, 2013, and
others).

The philosophical concept of orbital resonance is
known as “Musica Universalis” or “Music of the Spheres”
or “Harmony of the Spheres”, and was first developed
in the 6th century BC by Pythagoras of Samos (570–
495 BC) and his followers (Stephenson, 1974; God-
win, 1992; Rogers, 2016), who related planetary peri-
ods with the principles of musical harmony. The philoso-
pher noted that the pitch of a musical note is in in-
verse proportion to the length of the string that pro-
duces it, and that intervals between harmonious sound
frequencies form simple numerical ratios. Furthermore,
Pythagoras proposed that the bodies of the solar system
(including the Sun, the Moon and the planets) all emit a
unique hum based on their orbital revolution. According
to Philolaus (470 – 385 BC), the planetary harmonics
were characterized by four basic musical intervals: 2:1
(octave), 3:2 (fifth), 4:3 (fourth) and 1:1 (unison).

Herein we adopt a similar transdisciplinary approach
and show that music theory can still be useful to ex-
plore some possible unknown features that characterize
the interplanetary gravitational organization of our solar
system. Indeed, Kepler himself was inspired by musical
principles (Cartwright et al., 2021).

In fact, the correspondence between whole number ra-
tios in orbital resonances and music theory was further
developed by Johannes Kepler (1571 – 1630) in Harmon-
ices Mundi (The Harmony of the World, 1619), in which
he related musical tones with the periods, distances and
angular velocities of the planets (cf. Rogers, 2016). Very
likely, Kepler’s conception of the “Music of the Worlds”
reflected the polyphony of his day as developed by com-
posers such as Giovanni Pierluigi da Palestrina (1525 –
1594).

For example, he noted that, relative to the Sun, the an-
gular speed of the Earth varies by a semitone (a ratio of
16:15), between aphelion and perihelion. Similar mu-
sical relations were found for the other planets as well
so that Kepler hypothesized the existence of a celestial
choir made up of a tenor (Mars), two basses (Saturn and
Jupiter), a soprano (Mercury), and two altos (Venus and
Earth). These inquiries brought forth his discovery of the
“third law of planetary motion”. We recall that Kepler’s
first and second law of planetary motions were proposed
10 years earlier in Astronomia Nova (1609). Kepler’s
laws were empirically based and published almost 100
years before Newton proposed the gravitational law that
provided their physical basis.

The third law establishes that the square of a planet’s
orbital period T is proportional to the cube of the length
of the semi-major axis of its orbit a as:

a3 = cT 2 =
G(M� +m)

4π2
T 2 ≈ GM�

4π2
T 2, (1)

where G is the universal gravitational constant, m is the
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Figure 1: The semi-major axes of the planets versus the
Titus-Bode law and a simple exponential fit.

mass of the planet and M� is the mass of the Sun. Since
M� is much larger than any planetary mass, c can be
considered constant for the entire solar system. Fur-
thermore, c = 1 if the period is measured in years and
the semi-major axis length is measured in astronomical
units (that is the mean distance between the Sun and the
Earth). Finally, by establishing a simple relation between
the period and the semi-major axis of an orbit (a = T 2/3

or T = a3/2), Eq. 1 allows the rewriting of any planetary
equation depending on one of these orbital parameters
as a function of the other.

Further attempts to model the solar system using sim-
ple relations included the “Titius–Bode law of Plane-
tary Distances” (Bode, 1772; Titius, 1766) that, with
a good approximation, correctly reproduced the orbital
position of Mercury, Venus, Earth, Mars, Jupiter and
Saturn, and successfully predicted those of Ceres and
Uranus, although it failed for Neptune. Additional at-
tempts to improve such methods were proposed by other
authors (e.g.: Basano and Hughes, 1979; Louise, 1982;
Molchanov, 1968; Nieto, 1972), up to very recent times
(e.g.: Tattersall, 2013; Scafetta, 2014a; Aschwanden,
2018, and cited references).

Figure 1 shows the semi-major axes of the planets ver-
sus the Titus-Bode empirical law — az = 0.4 + 0.3 × 2z

for z = −∞ (Mercury), 0 (Venus), 1 (Earth), 2 (Mars),
... , 7 (Neptune) (Bode, 1772; Titius, 1766) — and a
simple exponential fit of the type f(x) = 2(ax+b)×3/2,
where the integer values of x denote the planet series
number from 1 to 9. The fit gives a = 0.529± 0.016 and
b = −1.53± 0.09. These coefficients are very close to the
whole-ratio 1/2 and -3/2, which might suggest an ideal
equation of the type an = 2−9/423n/4 ≈ 0.21 × 1.68n,
where n goes from 1 (Mercury) to 9 (Neptune), and
n = 5 denotes the asteroid belt.

Similar relations are found in the theoretical litera-

ture. For example, Pakter and Levin (2018) studied the
stability and self-organization of planetary systems sim-
ilar to our solar system. Gravitational instabilities usu-
ally lead to catastrophic events because planets either
collide or are ejected from the planetary system. How-
ever, these authors showed that if the planetary motion is
quasi-periodic and the planets could gain or lose energy
from interplanetary orbiting dust, then, computer sim-
ulations over astronomical time scales suggest that such
systems could reach a planetary self-organized structure.
The proposed equations were the following:

mẍi = −
GMmxi

r3i
−
∑
j

Gm2(xi − xj)
rij

− fθi
yi
ri

(2)

mÿi = −
GMmyi

r3i
−
∑
j

Gm2(yi − yj)
rij

− fθi
xi
ri

(3)

where M is the sun’s mass, m is the planet mass (which
this model supposes to all be equal), ri is the distance
between the sun and the planet i, rij is the distance be-
tween the planets i and j, and fθi is the angular force
responsible for the interaction between the planet i and
the residual dust of the protoplanetary disk.

Pakter and Levin (2018) demonstrated that systems
up to 9 planets reach a self-organized dynamical state
where the anomalistic periods between the radially ad-
jacent planets could be synchronized in a near 2:1 res-
onance. Moreover, several simulations showed that the
ratio of semi-major axis could follow a geometric pro-
gression of the type rn ∼ cn, where c is close to 1.6-1.7,
which is similar to what was found for the solar system:
see Figure 1. For example, for a perfect 2:1 resonance
ratio, the semi-major axis lengths would follow a Titus-
Bode-like relation of the type: rn ∼ 22n/3 ≈ 1.59n. How-
ever, these authors were not able to find a stable plan-
etary system made of more than 6 planets. They also
acknowledged that the proposed mechanism could not
be “unique” in explaining the self-organization of a solar
system. In fact, they did not succeed in exactly simu-
lating our solar system, which is made of 8 planets of
different masses plus the Asteroid and Kuiper belts.

We also observe that a major problem with the Titius–
Bode law (and also with the above fit function) is that
such an equation is physically unconstrained because the
parameter z (or n in the fitting function) do not have an
upper theoretical limit, which implies that the equations
would eventually fail the prediction. Also using z = −∞
for Mercury in the original Titius–Bode law was arbitrary
because such a value was chosen just to fix the diver-
gence. Therefore, such equations do not appear to be
statistically nor physically robust. In the following, we
propose a mirror-like planetary model that does not suf-
fer the same problem because it appears to be physically
constrained by the properties of the solar system itself.
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In this work, we first extend some of the calculations
by Kepler (1619) to all eight planets of the solar system
(in the 17th century the asteroid belt, Uranus and Nep-
tune were unknown) and, in most cases, we found that
simple whole-number ratios emerge in the periods, dis-
tances and angular velocities only for some planet pairs.
This result, however, implies that a correspondent musi-
cal ratio can not be found for all planetary ratios, which
suggests that our solar system is not characterized by a
self-organization structure similar to that found, for ex-
ample, in the Trappist-1 solar system. Thus, we searched
alternative orbital metrics and checked whether they
could produce a musical correspondence for all plan-
etary pairs. The assumption is that ratios adopted in
the traditional musical tuning systems and, in particu-
lar, those that form consonances, are peculiar because
they are harmoniously interrelated and, therefore, may
unearth important physical relations (Cartwright et al.,
2021).

An interesting feature of the solar system is that
it is made of four inner terrestrial planets (Mercury,
Venus, Earth and Mars) and four outer gas-giant plan-
ets (Jupiter, Saturn, Uranus and Neptune) divided by
the asteroid belt plus a large number of asteroids and
comets: see the orbital map of the solar system, art-work
by Lutz (2019). Thus, we focused on the mirror symme-
tries among the distances of the planets found by Ged-
des and King-Hele (1983), which are today better known
only in the popular scientific literature (e.g.: Martineau,
2002).

These authors noted that the distances of the eight
planets of the solar system from the Sun could be treated
as a mirror-reflected system relative to the belt of the as-
teroids. Herein, we apply a non-linear transformation
of these equations, which was inspired by the Western
musical practice of dividing the octave (corresponding
to a frequency doubling) into 12 equal parts, called half-
steps.

These 12 equal parts correspond, for example, to the
12 keys of the octave of a piano: the correspondent
twelve tones are C, Db, D, Eb, E, F , Gb, G, Ab, A,
Bb, and B, with the b (flat) notes represented by the
black keys. Each tone corresponds to a specific number
between 1 and 2 representing a frequency ratio between
that tone and the original reference tone as summarized
in Table 1. We use the listed musical tones as labels to
express such numerical values.

Of the 12 possible ratios within the octave, only 7 are
considered traditional harmonic consonances (Stephen-
son, 1974). In the key of C, these are labeled C, Eb,
E, F , G, Ab and A, where C is the reference note to
which all other tones are compared. In music, tone pairs
are considered harmonic consonances if they are per-
ceived as “pleasing” when sounded together (Thompson,
1946). Their pleasing quality is thought to result from
simple frequency ratios between their members, namely
if the ratios are made of small whole numbers related to

arithmetic and harmonic means. In physics, consonant
ratios could be related to a concept of mutual stability
and balance while dissonant ratios could express some
form of instability or tension.

Inspired by the Classical musical tuning systems, we
explore an alternative way to rewrite the equations pro-
posed by Geddes and King-Hele (1983) in a very com-
pact and elegant form, which suggests a possible ratio-
nal gravitational organization of the solar system that
involves scaling and mirror-symmetries. The same equa-
tions imply ratios by pairs of neighboring planets corre-
sponding to four main harmonic musical consonances.
Our proposed model is then compared against a recently
proposed alternative harmonic orbital resonance model
(Aschwanden, 2018) to test its performance in predict-
ing the positions of the planets of the solar system and
found to perform better. Finally, we respond to the brief,
but in our opinion inadequate critique of Abhyankar
(1983), which might have prevented until now a further
scientific development of the ideas proposed by Geddes
and King-Hele (1983) as desired by the same authors.

2 The 12-TJI and 12-TET tuning
systems and their consonances

In this section, we introduce the reader to some basic
concepts of the music tuning systems, which form the
mathematical metric that we adopt for obtaining our re-
sults.

In current Western musical practice, the octave (cor-
responding to a doubling of frequency) is almost exclu-
sively divided into 12 parts, labeled half-steps. The di-
vision of the octave into twelve half-steps likely derives
from Pythagorean philosophy in which new tones were
generated by taking the ratio 3/2. After 12 such iter-
ations, the pitch ratio to the original note is (3/2)12 =
129.746. Transposing this note down 7 octaves (dividing
the pitch by 27 = 128), there is a return to the origi-
nal tone with only a slight discrepancy of a 1.364% error
(known as the Pythagorean Comma). In this way twelve
distinct tones or pitch classes can be defined with only
a slight margin of error: see Rubinstein (2000) for ad-
ditional details. Hence, the octave on the modern piano
keyboard has 12 notes.

The 12-tone system, however, emerged from a long
history of evolving acoustical knowledge and tuning sys-
tems. The fundamental ratio of string lengths is 2 to
1, which is known as the octave. The octave can be di-
vided into two intervals by taking two different means
(for a = 1 and b = 2):

• arithmetic mean = (a + b) / 2 = 3/2 (known as the
“Perfect Fifth”);

• harmonic mean = 2ab / (a + b) = 4/3 (known as
the “Perfect Fourth”).
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# Name Tone 12-TET ET-MC 12-TJI JI-MC Consonance
0 Unison C 20/12 = 1 0 1/1 = 1 0 Yes
1 Minor Second Db 21/12 ≈ 1.0595 100 16/15 = 1.0667 112 No
2 Major Second D 22/12 ≈ 1.1225 200 9/8 = 1.125 204 No
3 Minor Third Eb 23/12 ≈ 1.1892 300 6/5 = 1.2 316 Yes
4 Major Third E 24/12 ≈ 1.2599 400 5/4 = 1.25 386 Yes
5 Perfect Fourth F 25/12 ≈ 1.3348 500 4/3 = 1.3333 498 Yes
6 Tritone Gb 26/12 ≈ 1.4142 600 45/32 = 1.4063 590 No
7 Perfect Fifth G 27/12 ≈ 1.4983 700 3/2 = 1.5 702 Yes
8 Minor Sixth Ab 28/12 ≈ 1.5874 800 8/5 = 1.6 814 Yes
9 Major Sixth A 29/12 ≈ 1.6818 900 5/3 = 1.6667 884 Yes
10 Minor Seventh Bb 210/12 ≈ 1.7818 1000 9/5 = 1.8 1018 No
11 Major Seventh B 211/12 ≈ 1.8877 1100 15/8 = 1.875 1088 No
12 Octave C 212/12 = 2 1200 2/1 = 2 1200 Yes

Table 1: Numerical values of the musical tones (in the key of C) of the equally tempered 12-TET and the justly tuned
12-TJI systems; their musical cents (MC) values evaluated with Eq. 5; and whether or not they form a consonance.

This yields the four main notes of the Pythagorean musi-
cal set: Unison (1/1), Perfect Fourth (4/3), Perfect Fifth
(3/2) and Octave (2/1). The difference between the Per-
fect Fifth and the Perfect Fourth gives the Pythagorean
epogdoon 9/8 (Major Second), which corresponds mu-
sically to a whole tone, for example the interval from
C to D. We note that the geometric mean (

√
ab) was

not used for the calculation of the harmonic intervals
because it produces

√
2, which is an irrational number

that the Pythagoreans considered imperfect. Also the
number 17 was considered imperfect because it sepa-
rates the 16 from its epogdoon 18. Figure 2 summarizes
the Pythagorean music theory. The four notes were dis-
cussed in Plato’s Timaeus where they were related to the
harmony of the cosmos (Godwin, 1992); they are based
on the numbers 1, 2, 3 and 4 (the sum is 10), which
formed the mystical symbol of the tetractys that symbol-
ized the musica universalis, the Cosmos, the four classical
elements (fire, air, water, and earth) and the organiza-
tion of space.

The four notes are also labeled harmonic consonances
since they sound “pleasant” when played together. How-
ever, this property should not be understood just as a
human perception, but as a consequence of the mathe-
matical simple ratios that characterize these notes so that
the subjective gradation from consonance to dissonance
should correspond to a gradation of sound-frequency ra-
tios from simple ratios to more complex ones. The Inter-
national Cyclopedia of Music and Musicians (Thompson,
1946) explains: “Acoustically, consonance is the degrees of
blending and fusion between two or more tones. The lower
the ratio, such as 2:1, 3:2, 4:3, the greater the degree of
fusion, hence consonance. Consonance may also be distin-
guished by the degree of freedom from beats. The octave
(2:1) is the most perfect acoustic consonance and is free
of beats; then follows, in order of degree, the fifth (3:2),
the fourth (4:3), etc.; the series becoming more and more

Figure 2: Pythagorean music theory: diagram show-
ing relations between epogdoon, diatessaron, diapente,
and diapason, which correspond to the Major Second
(9/8), Perfect Fourth (4/3), Perfect Fifth (3/2) and Oc-
tave (2/1), respectively. Pythagorean length ratios in this
figure are the multiplicative inverse of frequency rela-
tions as used in this article.

dissonant as the ratios depart from the simplest, i.e. 2:1.”
Several scientific works have linked the acoustics of

consonances to their aesthetic qualities (Bones et al.,
2014; McDermott et al., 2010; Plack, 2010). However,
these ratios appear to have also a deep geometrical and
physical meaning, which may explain why they may be
relevant to reveal some hidden organization of the solar
system and of other physical systems. For example, the
four main tones of the Pythagorean musical set describe
a Keplerian orbit. In fact, if a is the semi-major axis, b
the semi-minor axis and l = a(1 − e2), it is found that
a is the arithmetic mean, b the geometric mean and l

5



the harmonic mean of rmin and rmax (Cartwright et al.,
2021).

In the 16th century, musical theorists such as Gios-
effo Zarlino (1517–1590) completed the traditional set
of harmonic consonances by adding four more inter-
vals: the “Minor Third” (6/5); the “Major Third” (5/4);
the “Minor Sixth” (8/5); and the “Major Sixth” (5/3)
(Zarlino, 1558). These ratios can also be derived as har-
monic and arithmetic means of 1/1 and 3/2 in the case
of thirds and means between 4/3 and 2/1 in the case of
sixths (Forster, 2010). The proposed system was defined
as just because all notes are related by intervals that are
defined by rational numbers (Cartwright et al., 2021).
In the tuning systems employing just-intonation, exact
harmonic consonance ratios are maximized.

In our analysis, we employ the five-limit twelve-tone
scale which maximizes just intonation between tone
pairs of the octave; we will refer to this as the twelve-
tone just-intonation system (12-TJI). In this system,
more complex ratios are assigned to the five remain-
ing non-consonant (or dissonant) tones of the octave:
(in the key of C) the “Minor Second” (Db, 16/15); the
“Major Second” (D, 9/8); the “Tritone” (Gb, 45/32); the
“Minor Seventh” (Bd, 9/5); and the “Major Seventh” (B,
15/8).

The utilization of perfect ratios of harmonic conso-
nances within just-intonation tuning causes the size of
half-steps to vary between different pairs of adjacent
notes within the octave, as shown below. As a conse-
quence, a keyboard instrument tuned to play in one key
(e.g. C major) can be wildly out of tune in another (e.g.
Gb major).

In order to minimize this limitation, different tuning
systems evolved through the centuries, eventually yield-
ing the twelve-tone equal-temperament (12-TET) system
which, today, has been widely adopted. In general, an
equal-tempered system is a musical tuning system that
approximates just intervals by dividing an octave into
equal steps. Therefore, the ratio of the frequencies of
any adjacent pair of notes is the same. In the 12-TET,
the smallest interval is a 1/12th of the width of an oc-
tave, and it is called a semitone or half-step. By normal-
izing the ratio of all half-steps in the octave to a value
of

γ = 21/12 ≈ 1.05946, (4)

one can play equally in tune in any key (e.g. C major,
Gb major, etc.), but this is achieved at the expense of in-
troducing slight errors into all the perfect simple ratios
of harmonic consonances, except the Unison and the Oc-
tave. A 12-TET system would have been unimaginable
to ancient Greek philosophers because it involved roots
of 2 which are irrational numbers.

To evaluate quantitatively how well specific tone pairs
are tuned in the standard 12-TET system versus those in
the 12-TJI system, the octave (that is the 2/1 ratio) is
assumed to be made of 1200 cents. Given a real number

x between 1 and 2, its musical cent (MC) value is defined
by the equation:

MC(x) = 1200 log2(x). (5)

Thus, for r = 1 (Unison) its MC value is 0 cents, while
for r = 2 (Octave) its MC value is 1200 cents. Moving
sequentially by n equal-tempered half-steps from a refer-
ence tone to a new tone, the frequency ratio between the
two tones is exactly γn = 2n/12 so that its MC value is
100× n. If r is larger than 2, Eq. 5 can still be used, and
the correct tone relation can be estimated by subtracting
an integer number of 1200 cents for each octave. For
example, MC = 1200 + 100 × n cents (x = 21+n/12)
corresponds to the nth equal-tempered tone in the sec-
ond octave; MC = 2400 + 100 × n cents (x = 22+n/12)
corresponds to the nth equal-tempered tone in the third
octave; and so on.

In the idealized 12-TJI system, which uses the whole
number ratios of harmonic consonances, the tones
slightly diverge from the 12-TET ones: for example, a
Perfect Fifth, a 3/2 ratio, has 702 cents while the 7
(equal-tempered) half-steps approximates a Perfect Fifth
with 27/12, which corresponds to 700 cents; similarly,
a Major Third is 5/4 and corresponds to 386 cents,
whereas 4 equal-tempered half-steps correspond to 400
cents; and so on. The differences between the 12-TJI and
the 12-TET vary from 0 to 18 cents, with an average of 9
cents. Table 1 summarizes and compares the 12 tones in
the 12-TET and 12-TJI systems.

The same MC notation can also be used to evaluate
how close the ratios of orbital parameters between ad-
jacent planets are to those of musical tones pairs in the
12-TJI and 12-TET systems.

In the following we will use both tuning systems: the
12-TJI allows a direct interpretation based on harmonic
whole number ratios that recalls the resonance formal-
ism of the orbital commensurabilities; the 12-TET sys-
tem allows us to write the equations in a more compact
mathematical formalism.

3 Basic attempts to find musical
tones and consonances in the or-
bital parameter ratios of adjacent
planets

In Harmonices Mundi Kepler (1619) attempted to find
correspondences between ratios of planetary orbital pa-
rameters, musical harmony, and Platonic solids. Herein,
we evaluate and study the ratios of the semi-major axis,
sidereal periods, and mean orbital velocities of neighbor-
ing planets, including the asteroid belt.

The analysis aims to determine whether musical tones
and, more specifically, consonances exist in such a se-
ries of orbital variables as found, for example, in the
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Planet S-M Axis Period Speed a2/3

AU year km/s
Mercury 0.387 0.241 47.36 0.531
Venus 0.723 0.615 35.02 0.806
Earth 1.000 1.000 29.78 1.000
Mars 1.524 1.881 24.07 1.324

Asteroid 2.825 * 4.748 * 17.72 1.998
Jupiter 5.204 11.862 13.06 3.003
Saturn 9.583 29.457 9.68 4.512
Uranus 19.201 84.011 6.80 7.170

Neptune 30.048 164.79 5.43 9.665

Table 2: The semi-major axes a, sidereal period T and
mean orbital velocities v of the planets of the solar sys-
tem, including the belt of the asteroids located between
Mars and Jupiter. Asteroid refers to the 5:2 Kirkwood
asteroid-belt gap; (*) indicates theoretical values cal-
culated using Eq. 1. The last column reports the val-
ues of a2/3 discussed in the main text. (Data from:
https://nssdc.gsfc.nasa.gov/planetary/factsheet/).

Trappist-1 solar system or among the moons of Jupiter.
Table 2 reports the astronomical data herein used. The
planets are listed from the closest to the farther from the
Sun as: Mercury (Me); Venus (Ve); Earth (Ea); Mars
(Ma); Asteroid (As); Jupiter (Ju); Saturn (Sa); Uranus
(Ur); and Neptune (Ne).

The asteroid belt distance from the Sun (As) was set
at the 5:2 Kirkwood-gap (2.825 AU) as a surrogate (al-
though negative or missing) planet because, in the fol-
lowing discussion, such a region is supposed to be a kind
of “divergence” or “reflection” point separating the in-
ner (or terrestrial) from the outer (or gas-giant) plan-
ets (cf.: Geddes and King-Hele, 1983; Moons and Mor-
bidelli, 1995). This is the central gap of the asteroid belt
and it is linked to the 5:2 resonance between Jupiter and
Saturn. Such a distance is very close to the geometrical
mean between Mars and Jupiter,

√
Ma× Ju ≈ 2.816 AU,

and to the mean orbital radius of the dwarf planet Ceres
(about 2.769 AU).

Table 3 shows the chosen orbital ratios, their values
in MC (using Eq. 5), and their closest tone (using Table
1) relative to both the 12-TET and the 12-TJI systems.
In addition, we report in parenthesis whether or not the
closest tone is a consonance and the error-distance in
MC of the planetary ratio from the closest tone for both
musical systems. Here we maintain Kepler’s practice of
assigning the higher frequency tone to the faster moving,
inner planet. We also assume that when the discrepancy
between the orbital ratio and the music tone is equal or
larger than 25 cents, the two values are not compatible
(let us say “untuned”) and, therefore, such an orbital
ratio cannot be interpreted as a musical tone in these
tuning systems.

Table 3 shows that out of 8 planetary adjacent couples:

• using the semi-major axis – 6 or 5 ratios, in 12-
TET and 12-TJI respectively, are untuned, and only
3 are close to consonances, of which 2 are untuned.

• using the orbital period – 3 ratios are untuned,
and only 6 are close to consonances, of which 3 are
untuned.

• using the average speed – 3 or 4 ratios are un-
tuned, and only 7 are close to consonances, of which
3 or 4 are untuned, respectively.

Thus, the results are not satisfactory as each of these
three metrics fails to find tuned musical correlates for
several planetary pair ratios. However, one could won-
der whether a different set of orbital measures could pro-
vide a better musical interpretation of the movements of
the bodies of the solar system.

In this regard, we notice that Kepler’s third law of
planetary motions (Eq. 1) indicates the existence of sim-
ple relations between the ratios of planetary measure-
ments, which are characterized by specific exponents
such as {

(a1/a2)
3/2 = T1/T2

(a1/a2)
−1/2 = v1/v2,

(6)

where the first equation derives directly from Kepler’s
third law and the second by approximating the orbital
perimeter as 2πa, where a is the semi-major axis, and
using the definition of mean orbital speed as v = 2πa/T .
Thus, the ratios of average distances, orbital periods, and
average velocities are mutually related by varying the
exponents from 1, to 3/2, to −1/2 respectively.

Thus, in the following sections, we look for exponents
k such that the values

(a1/a2)
k (7)

for adjacent planets could be best expressed in musical
tones and, more specifically, in harmonic consonances.
To do this, we take advantage of the equations proposed
by Geddes and King-Hele (1983).

4 The Geddes – King-Hele equa-
tions

Geddes and King-Hele (1983) noted that the orbits of
the eight planets of the solar system appear as if they
were “reflected” about the asteroid belt so that the
following symmetries are found: Mercury↔Neptune,
Venus↔Uranus, Earth↔Saturn, and Mars↔Jupiter.

More specifically, these authors found that the ratios
among the mean distances from the Sun of the planets
(in the following denoted by the planet’s name initials)
could be approximated as powers of a single constant
which these authors denoted by

r = 21/8 ≈ 1.09051. (8)

7
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Planets Ratio MC 12-TET (Con) ET-MCerr 12-TJI (Con) JI-MCerr

Semi-Major Axis Length
Ve/Me 1.868 1082 B (N) -18 B (N) -6
Ea/Ve 1.383 562 Gb (N) -38 Gb (N) -28
Ma/Ea 1.524 729 G (Y) 29 G (Y) 27
As/Ma 1.854 1068 B (N) -32 B (N) -20
Ju/As 1.842 1058 B (N) -42 B (N) -30
Sa/Ju 1.841 1057 B (N) -43 Bb/B (N) 31/-31
Ur/Sa 2.004 1203 C (Y) 3 C (Y) 3
Ne/Ur 1.565 775 Ab (Y) -25 Ab (Y) -39

Orbital Period
Ve/Me 2.552 * 422 E (Y) 22 E (Y) 36
Ea/Ve 1.626 842 Ab (Y) 42 Ab (Y) 28
Ma/Ea 1.881 1094 B (N) -6 B (N) 6
As/Ma 2.524 * 403 E (Y) 3 E (Y) 17
Ju/As 2.498 * 385 E (Y) -15 E (Y) -1
Sa/Ju 2.484 * 375 E (Y) -25 E (Y) -11
Ur/Sa 2.852 * 614 Gb (N) 14 Gb (N) 24
Ne/Ur 1.962 1166 C (Y) -34 C (Y) -34

Average Orbital Speed
Me/Ve 1.352 523 F (Y) 23 F (Y) 25
Ve/Ea 1.176 281 Eb (Y) -19 Eb (Y) -35
Ea/Ma 1.237 369 E (Y) -31 E (Y) -17
Ma/As 1.358 530 F (Y) 30 F (Y) 32
As/Ju 1.357 529 F (Y) 29 F (Y) 31
Ju/Sa 1.349 518 F (Y) 18 F (Y) 20
Sa/Ur 1.424 611 Gb (N) 11 Gb (N) 21
Ur/Ne 1.252 389 E (Y) -11 E (Y) 3

Table 3: Musical tones in the semi-major axis, orbital period, average speed ratios of adjacent planets. The columns
indicate: the adjacent planet couples; the orbital parameter ratio; its value in musical cents (MC), the symbol (*)
indicates that the MC value is reduced by 1200 cents; 12-TET is the closest tone (for the inner planet of the pair
when the outer planet is tuned to C) according to the exact 12-TET system with the Yes/No consonance property
(Con); ET-MCerr is the relative error; 12-TJI and JI-MCerr are equivalent but relative to the 12 tones of the just-
intonation 12-TJI system. (Refer to Table 1 for the numerical values of the tones).

Then, the following nearly exact equations relating con-
tiguous planets were found: V e ≈ r7Me; Ea ≈ r4V e; Ma ≈ r5Ea;

As ≈ r7Ma; Ju ≈ r7As;
Sa ≈ r7Ju; Ur ≈ r8Sa; Ne ≈ r5Ur.

(9)

The middle equations relate Mars, an estimate of the
asteroid belt distance from the Sun and Jupiter, where
the distance of the asteroid belt (As) was originally arbi-
trarily set at

√
Ma× Ju ≈ 2.816 AU, which is, neverthe-

less, very close to the 5:2 Kirkwood-gap at 2.825 AU that
we prefer to use in the following as the mirror point.

Geddes and King-Hele (1983) noted that the percent
errors in the eight equations listed in the system 9 are
very small. We get: 1.9%, -2.2%, -1.2%, 0.8%, 0.8%,
0.4%, 0.2%, 1.5% respectively.

The above equations can also be combined in several
ways. For example, it is possible to obtain the mean dis-
tance from the Sun of all planets as a function of only

that of Mercury and specific powers of r. It is also easy
to obtain the following identity:

V e× Ju
Me× Sa

≈ Ea×Ne
Ma× Ur

≈ 1, (10)

which have an accuracy of 1.5% and 2.7%, respectively.
Finally, it is possible to obtain the following Geddes –
King-Hele equations that “mirror” the planets relative to
the asteroid belt:
Me

Ea
× Ne

Sa
≈ V e

Me
× Ur

Ne
≈ Ea

Ma
× Sa

Ju
≈ r2 = 21/4 (11)

Sa

Ea
× Ma

Ju
≈ Ur

V e
× Ea

Sa
≈ Ne

Me
× V e

Ur
≈ r12 = 23/2 (12)

It is to be noted that the chosen constant r was inter-
preted by the authors as the mean frequency ratio be-
tween notes in a musical octave, although Abhyankar
(1983) critiqued such an interpretation. However, as ex-
plained above, in Western musical practice, the octave is
divided into 12 parts, not 8.
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5 A non-linear transformation of
the Geddes – King-Hele equations

Herein we convert the Geddes – King-Hele equations to a
form that is compatible with the chromatic musical scale.
This is done by raising each side of Eqs. 9 to the k = 2/3
power. In fact, as previously stated, the frequency ratio
between any adjacent half-steps in the 12-TET system is
γ = 21/12 ≈ 1.05946 (Eq. 4), which is equal to r2/3.

Abhyankar (1983) also noted that such a change of
metric would make the Geddes – King-Hele equations
more compatible with the frequency ratios between the
notes of the tuning systems proposed above. How-
ever, he summarily and erroneously concluded that there
was “nothing particularly musical” about the mirror-
symmetries between the distances of the planets nor that
those symmetries were “telling us something about the
origin of the Solar System or its stability”. Indeed, he
did not realize the mathematical and physical properties
of the new equations that the new metric implies. Let us
disclose it.

The new planetary terms can now be related mathe-
matically by powers of γ, which is equivalent to move-
ments in half-steps in the 12-TET musical system because
γ = r2/3. Therefore, it follows that: V e′ ≈ γ7Me′; Ea′ ≈ γ4V e′; Ma′ ≈ γ5Ea′;

As′ ≈ γ7Ma′; Ju′ ≈ γ7As′;
Sa′ ≈ γ7Ju′; Ur′ ≈ γ8Sa′; Ne′ ≈ γ5Ur′.

(13)
where Me′ =Me2/3, V e′ = V e2/3, Ea′ = Ea2/3, Ma′ =
Ma2/3, As′ = As2/3, Ju′ = Ju2/3, Sa′ = Sa2/3, Ur′ =
Ur2/3and Ne′ = Ne2/3.

We can now employ the 12-TET system to express the

ratios between adjacent planets in terms of musical half-
steps. For example, V e′ = γ7Me′ can be rewritten as:(

V e

Me

) 2
3

=
V e′

Me′
≈ γ7 = 27/12. (14)

This is equivalent to saying that the ratio of semi-major
axis lengths of the orbits of Venus and Mars elevated to
the 2/3rd power, that is V e′/Me′, is equal to the ratio
of frequencies of two pitches that are 7 half-steps apart,
which corresponds to a Perfect Fifth (a ratio of 3/2).

Eq. 12 can be rewritten as:

Sa′

Ea′
×Ma′

Ju′
≈ Ur′

V e′
×Ea

′

Sa′
≈ Ne′

Me′
×V e

′

Ur′
≈ γ12 = 2, (15)

which expresses octave ratios.
Abhyankar (1983) was able to derive Eq. 15, but he

did not realize that it implies a series of scaling musical
relations. In fact: Ju′/Ma′ ≈ γ14 = 14 half-steps ≈
2 Perfect Fifths = (3/2) × (3/2) = 2.25; Sa′/Ea′ adds
an octave to that, doubling the ratio to 4.5; similarly,
Ur′/V e′ doubles this to 9; and Ne′/Me′ doubles that to
18. Consequently, Eq. 15 can be rewritten also in the
following compact form:

1
Ne′

Me′
≈ 2

Ur′

V e′
≈ 4

Sa′

Ea′
≈ 8

Ju′

Ma′
≈ 18, (16)

which reveals, both a mirror-like and scaling structure
relative to the asteroid belt. Note the sequence of the
powers of 2 (1 = 20, 2 = 21, 4 = 22 and 8 = 23) relative
to planetary pairs approaching the asteroid belt.

As a function of the semi-major axis a, of the period
T and of the mean orbital speed v, Eq. 16 corresponds to

1

(
aNe
aMe

) 2
3

≈ 2

(
aUr
aV e

) 2
3

≈ 4

(
aSa
aEa

) 2
3

≈ 8

(
aJu
aMa

) 2
3

≈ 18 (17)

1

(
TNe
TMe

) 4
9

≈ 2

(
TUr
TV e

) 4
9

≈ 4

(
TSa
TEa

) 4
9

≈ 8

(
TJu
TMa

) 4
9

≈ 18 (18)

1

(
vMe

vNe

) 4
3

≈ 2

(
vV e
vUr

) 4
3

≈ 4

(
vEa
vSa

) 4
3

≈ 8

(
vMa

vJu

) 4
3

≈ 18 (19)

where the Eqs. 6 were used. Using Table 2, the exact
values of the four ratios multiplied by increasing pow-
ers of 2 are: 18.20, 17.80, 18.05 and 18.14, respectively,
using the semi-major orbital axes; 18.20, 17.79, 17.99
and 18.14, respectively, using the periods; and 17.95,
17.79, 17.90 and 18.08, respectively, using the mean or-
bital velocities. Thus, Eq. 16 [or Eqs. 17, 18 and 19]
describes the orbits of the planets of the solar system
within about 1% error (or with a 99% accuracy), and
elegantly expresses its scaling and mirror-like symmetry

structure with respect to the asteroid belt. More sprecif-
ically, it suggests that the inner and outer orbits of the
solar system are organized in a simple scaling structure.

Using the equations for planetary distances raised to
the 2/3rd power and expressing the results in terms of
half-steps, we now evaluate how well the planetary ra-
tios can be assigned to musical tones.

Table 4 reports the semi-major axis ratios of adjacent
planets elevated to the 2/3rd power using the orbital
data listed in Table 2, and compares them with their
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Planets Ratio Ratio2/3 MC NHS Tone and Consonance ET-MC ET-MCerr JI-MC JI-MCerr

Ve/Me 1.868 1.517 721 7 G Perfect Fifth (Y) 700 21 702 (3/2) 19
Ea/Ve 1.383 1.241 374 4 E Major Third (Y) 400 -26 386 (5/4) -12
Ma/Ea 1.524 1.324 486 5 F Perfect Fourth (Y) 500 -14 498 (4/3) -12
As/Ma 1.854 1.509 712 7 G Perfect Fifth (Y) 700 12 702 (3/2) 10
Ju/As 1.842 1.503 705 7 G Perfect Fifth (Y) 700 5 702 (3/2) 3
Sa/Ju 1.841 1.502 705 7 G Perfect Fifth (Y) 700 5 702 (3/2) 3
Ur/Sa 2.004 1.589 802 8 Ab Minor sixth (Y) 800 2 814 (8/5) -12
Ne/Ur 1.565 1.348 517 5 F Perfect Fourth (Y) 500 17 498 (4/3) 19

Table 4: Number of half-steps (NHS), musical tones and consonances in both the exact 12-TET (ET) and 12-TJI
(JI) values, and in musical cents (MC), versus the semi-major axis ratios of adjacent planets elevated to the 2/3rd
power, with the relative musical cent errors (MCerr). (Refer to Table 1 for the numerical values of the tones).

closest musical tones using both the 12-TET and 12-TJI
values (expressed in musical cents, using Eq. 5). We
also tabulated the relative musical cent errors from the
closest tone. Figure 3 shows the results using both tone
systems.

Using the 12-TET system, an absolute divergence be-
tween 2 and 26 cents, with an average of 13 cents is
observed; whereas in the 12-TJI tuning, the absolute di-
vergence is between 3 and 19 cents, with an average of
11 cents. These results suggest that the chosen plane-
tary measure among couples of adjacent planets of the
solar system can be well approximated by the tones of
the Western musical tradition.

As previously stated, of the 12 possible tones within
the octave, 7 are considered consonances (Stephenson,
1974). This happens when the exact value of the note
can be well approximated by a ratio n/m where the
whole numbers n and m are small and members of the
set: 3, 5, and powers of 2. The consonance ratios, in
the key of C, are: Unison or Octave (C), 1/1 or 2/1;
Minor Third (Eb), 6/5; Major Third (E), 5/4; Perfect
Fourth (F ), 4/3; Perfect Fifth (G), 3/2; Minor Sixth
(Ab), 8/5; Major Sixth (A), 5/3. As summarized in Table
5, V e′/Me′, As′/Ma′, Ju′/As′, and Sa′/Ju′ are tuned
to a Perfect Fifth, Ma′/Ea′ and Ne′/Ur′ are tuned to a
Perfect Fourth, Ea′/V e′ is tuned to a Major Third, and
Ur′/Sa′ to a Minor Sixth.

Thus, not only do all these planetary ratios appear suf-
ficiently well-tuned to be members of the traditional mu-
sic octave, but all of them also correspond to the musical
consonance ratios according to both the 12-TET and 12-
TJI systems. This result suggests that, taken as a set, the
orbits of the planets present a specific well tuned and
harmonized structure.

6 Statistical significance and ro-
bustness of the exponent k = 2/3

We now check whether the close fit between idealized
musical ratios and planetary data using the exponent
k = 2/3 is coincidental. Thus, we repeated the above

calculations by varying the value of k between 0.3 to 1
in steps of 0.001.

Figure 4 plots the average, maximum and minimum
error (measured in MC) between the eight adjacent
planet semi-major axis ratios raised to the power of k
and the closest of the twelve musical tones listed in Ta-
ble 1 as a function of the exponent k. Figure 4A uses the
tones of the 12-TET system while Figure 4B uses those of
the 12-TJI system. The analysis depicted in Figure 5 uses
only the 7 consonances and ignores the other 5 tones.
The position of the value for k = 2/3 is highlighted in
both figures.

Figures 4 and 5 show that k ≈ 2/3 corresponds to
the absolute minimum in the average error (green curve)
between our proposed model and both musical tuning
systems, which suggests that the chosen measure could
be physically meaningful. Regarding the maximal error
(red curve), k ≈ 2/3 corresponds in Figure 4A to the
second-lowest minimum, and to the absolute minimum
in Figure 4B and in both Figures 5A and 5B, which refer
to the consonances alone. The result suggests that the
exponent k = 2/3 optimizes the metrics expressed by
Eq. 7 to reproduce the simple ratios found in musical
consonances.

To further test the statistical relevance of our result,
we now evaluate the probability of obtaining the 8 plan-
etary ratios close to musical consonances against the null
hypothesis that they are randomly distributed. Above we
found that the planetary data yield the simple ratios of
harmonic consonances within a mean accuracy of about
11-13 cents up to a maximum of 26 cents in just a single
case relative to the 12-TET system. The range in MC of
planetary distance ratios elevated to the 2/3rd power is
428 cents: from 374 cents (close to a Major Third for
Ea’/Ve’) to 802 cents (close to a Minor Sixth for Ur’/Sa’).
To each end of this range, we add the associated error-
value, to obtain a total band range of 475 cents from
350 to 825 cents. Within this range, four idealized con-
sonance ratios lie: the Major Third, the Perfect Fourth,
the Perfect Fifth, and the Minor Sixth. Each of these four
tones can be assumed to have a maximum error range of
±25 cents. Therefore, their total error range accommo-
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Figure 3: Top: The black circles indicate the distance ratios raised to the 2/3rds power of adjacent planets in both
the equal tempered 12-TET and justly tuned 12-TJI (in the key of C expressed as half-steps or MC/100): see Table
4. The red bars indicate the consonances, while the pink ones the dissonances. The width of each bar is 50 cents.
Bottom: the musical notation gives the note for the inner planet of the pair when the outer planet is tuned to middle
C. (Refer to Table 1 for the numerical values of the tones).

# Name Tone Consonance Planet ratio
1 Minor second Db No
2 Major second D No
3 Minor third Eb Yes
4 Major Third E Yes Ea′/V e′

5 Perfect Fourth F Yes Ma′/Ea′; Ne′/Ur′

6 Tritone Gb No

7 Perfect Fifth G Yes
V e′/Me′; As′/Ma′;
Ju′/As′; Sa′/Ju′

8 Minor sixth Ab Yes Ur′/Sa′

9 Major Sixth A Yes
10 Minor seventh Bb No
11 Major Seventh B No
12 Octave C Yes

Table 5: Comparison between the 12 tones and the semimajor axis ratios among the adjacent planets raised to the
k = 2/3 power deduced from the corrected Geddes–King-Hele planetary distance equations (Eq. 13). The tone is
that of the inner planet of the pair when the outer planet is tuned to C. (Refer to Table 1 for the numerical values
of the tones).

dates at most 200 cents of the total available 475 cent
range, that is 50 cents for each of the four consonances.
Thus, the statistical chance that the eight planetary ratios
occur randomly with this proximity to the four selected
consonances is p = (200/475)8 < 0.001 = 0.1%. Thus, it
is very unlikely that our result occurs by chance.

7 Comparison versus the harmonic
orbit resonance model

Aschwanden (2018) studied the regularity of the spaced
patterns of the distances of the planets of the solar sys-
tem and showed that logarithmic spacing models, such
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Figure 4: Exponent k versus average, maximum and
minimum error measured in musical cents from adja-
cent planet distance ratios raised to the exponent k to
the closest musical tone for: A) the equal tempered 12-
TET system; B) the justly tuned 12-TJI. The value for
k = 2/3 ≈ 0.667 is highlighted.

as both the Titus-Bode law and its generalized form, per-
form poorly versus a harmonic resonance model based
on quantized scaling factors. More specifically, the au-
thor showed that the planet distances Ri from the Sun
and their orbital periods Ti (where i = 1 for Mercury,
i = 2 for Venus, etc.) are related to scaling laws of the
type:

Ri+1

Ri
=

(
Ti+1

Ti

) 2
3

=

(
Hi+1

Hi

) 2
3

(20)

where the 2/3 exponent derives from Eq. 1, and
the whole number ratios Hi+1/Hi yield to the follow-
ing planetary equations linking the semi-major axes of
neighboring planet pairs:

V e ≈ (5/2)2/3Me; Ea ≈ (5/3)2/3V e;
Ma ≈ (2/1)2/3Ea; As ≈ (5/2)2/3Ma;
Ju ≈ (5/2)2/3As; Sa ≈ (5/2)2/3Ju;
Ur′ ≈ (3/1)2/3Sa; Ne ≈ (2/1)2/3Ur.

(21)

The Eqs. 21 express a planetary model of the solar
system alternative to that of Eqs. 13. The scaling factors
are different. Thus, it is important to determine which
one of the two planetary models performs better in pre-
dicting the size of the orbits of the solar system.

To do this, we observe that given a semi-major axis
a for a planet (see Table 2), the equation sets 13 and
21 can be used to predict the position of the other eight
planets relative to the chosen one. Thus, for each of the
two models, we can obtain nine different sets of predic-
tions starting from each planet. Finally, the two predic-
tion groups are statistically compared.

Figure 5: Exponent k versus average, maximum and
minimum error measured in musical cents from adja-
cent planet distance ratios raised to the exponent k to
the closest musical consonance for: A) 12-TET system;
B) the 12-TJI system. The value for k = 2/3 ≈ 0.667 is
highlighted.

This is done in Figure 6 that shows the relative error
for each planet given by the expression:

relative error =
prediction− observation

observation
− 1. (22)

The figure shows that the Geddes – King-Hele 12-TET
based model (Eqs. 13) performs significantly better
than the harmonic orbit resonance model by Aschwan-
den (2018) (Eqs. 21). This is demonstrated by the lower
dispersion and trend bias in the relative error sets pro-
duced by the former model relative to the latter one.
Table 6 reports the average predictions for each planet
relative to the nine sets for each model with the relative
errors relative to the observations. It is found that on
average the Geddes – King-Hele 12-TET model predicts
the correct semi-major axis lengths with a mean error of
0.8%, while the harmonic orbit resonance model has a
mean error of 2.5%. The latter also presents a trend bias
because the semi-major axis lengths of Mercury, Venus
and Earth are underestimated by about 4% while those
of Uranus and Neptune are overestimated by about 5%.

The poor performance of the harmonic orbit reso-
nance model was somewhat expected from the results
discussed in section 3 because it approximates the orbital
period ratios listed in Table 3 with consonances (within
two octaves), which, however, are not always the closest
of the twelve tones to the period ratios. Even if the har-
monic orbit resonance model would have adopted the
more accurate ratios listed in Table 3, it would have nev-
ertheless inadequately agreed with the data, as we dis-
cussed in Section 3.
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Figure 6: Relative errors regarding the predictions of the semi-major axis lengths of the planets of the solar system
according to: [A] the Geddes – King-Hele 12-TET based model (Eqs. 13) herein proposed; [B] the harmonic orbit
resonance model by Aschwanden (2018) (Eqs. 21).

Planet S-M Axis GKH 12-TET HOR
Observations Predictions Error (%) Predictions Error (%)

Mercury 0.387 0.388 0.26 0.374 -3.26
Venus 0.723 0.712 -1.58 0.690 -4.62
Earth 1.000 1.006 0.63 0.969 -3.06
Mars 1.524 1.552 1.83 1.539 0.97

Asteroid 2.825 2.846 0.75 2.834 0.34
Jupiter 5.204 5.220 0.31 5.221 0.33
Saturn 9.583 9.574 -0.10 9.617 0.36
Uranus 19.201 19.147 -0.28 20.005 4.19

Neptune 30.048 29.529 -1.73 31.756 5.68

Table 6: Mean predictions and relative errors in the semi-major axes of the planets of the solar system relative
to: [A] the Geddes – King-Hele 12-TET based model (Eqs. 13) herein proposed; [B] the harmonic orbit resonance
(HOR) model by Aschwanden (2018) (Eqs. 21).

8 Prediction of the Kirkwood gaps
of the asteroid-belt

As a final test, we extend the Geddes – King-Hele 12-TET
model to evaluate its prediction ability. For example, the
increasing powers of 2 present in Eq. 17 as the planet
pairs approach the mirror point given by the asteroid
belt, suggest the existence of a final step characterized
by the multiplicative factor 24 = 16, which is the high-
est possible value compatible with the constant 18 that
satisfies the condition ai+1/ai > 1.

This extension suggests the existence of one last inner

pair of close orbits (semi-major axis a1 < a2) that are
mirror-symmetric relative to the asteroid belt and that
fulfill the following condition:

16

(
a2
a1

) 2
3

≈ 18. (23)

Since the two orbits would be very close to each other,
they should characterize the geometry of the asteroid
belt itself. Note that the ratio 18/16 = 9/8 corresponds
to the Pythagorean epogdoon (Figure 2).

Indeed, the asteroid main-belt is characterized by five
primary gaps at the 4:1, 3:1, 5:2, 7:3, 2:1 mean-motion
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resonances between the asteroids and Jupiter (Moons
and Morbidelli, 1995; Moons et al., 1998). The cen-
tral region is characterized by the three central gaps at
a3:1 = 2.502 AU, a5:2 = 2.825 AU, and a7:3 = 2.958 AU,
respectively. Ceres is nearly in the middle at ac = 2.769
AU. By assuming the mirror point at Ceres or at a5:2
(which is what we adopted above for the entire solar
system), we have the possible mirroring pair given by
a3:1 ↔ a7:3. By applying Eq. 23, we get:

16

(
a7:3
a3:1

) 2
3

= 16

(
3

7
× 3

1

) 4
9

= 16

(
9

7

) 4
9

= 17.89,

(24)
where we used Eqs. 1 and 17, together with the period
of Jupiter (11.86 years) to get a3:1 and a7:3. Thus, the
prediction of Eq. 23 has an error of 0.6% and it is linked
to Jupiter’s resonances.

It is interesting to notice that if the ratios As/Ma and
Ju/As (where above we chose As = a5:2 as the mir-
ror point and the asteroid-belt position) are evaluated as
a3:1/Ma and Ju/a7:3, we would get 572 and 652 MC,
respectively, which do not correspond to any tone and
occur near 600 MC that corresponds to a Tritone (a dis-
sonant tone relation). Perhaps, these relations explain
why a3:1 and a7:3 are gaps despite their orbital resonance
with Jupiter and, in general, why the asteroid belt occu-
pies an unstable gravitational region.

In conclusion, Eq. 17 with its mathematical extension
Eq. 23 appears to well characterize the regularity of the
spaced patterns of the distances of the planets of the so-
lar system including the inner main structure of the as-
teroid belt.

9 Vulcanoid asteroids versus
transneptunian objects

Eq. 17 plus Eq. 23 should complete our model, which
is, therefore, physically fully constrained. In fact, no
other extension of the equation would be possible since
it would require an additional, but unknown terrestrial
planet between the Sun and Mercury — the mythical
planet Vulcan that Urbain Le Verrier suggested in the
1850s to explain the anomalies of the orbit of Mercury (a
problem that was later solved by Albert Einstein) or some
vulcanoid asteroids which are still hypothesized (Evans
et al., 1999) — and another planet between Neptune and
the termination shock or the heliopause boundary (be-
tween 30 and 100 AU from the Sun) where only small
transneptunian objects like Pluto, Eris, and other comets
are found, which are not classified as regular planets of
the solar system. Furthermore, it is not possible to ex-
tend our model beyond the gaps of the asteroid main-
belt limit expressed by Eq. 23.

This property greatly differentiates our model from,
for example, the Titius–Bode’s law whose upper limit

(and also the lower limit in the case of Mercury) is un-
constrained and, therefore, also yields questions of sta-
tistical robustness.

On the contrary, our equation is fully constrained.
Thus, the statistical robustness of its predictions cannot
be easily questioned, and it establishes that it is possible
to evaluate the planetary orbits of the outer planets from
those of the inner planets up to the gaps of the asteroid-
belt with a single scaling and mirror-like equation (de-
picted graphically in Figure 7) within an average error
of 1% or, alternatively, with a 99% accuracy.

In any case, let us try to extend the proposed model
further; an operation that can be done by doubling and
doubling again Eq. 17 for each pair of added symmet-
ric bodies that, in the case of the solar system, can only
generically represent astronomical bands, as actual real
planets are missing.

By assuming Pluto (aP = 39.237 au), which could rep-
resent the Kuiper belt, and by doubling Eq. 17 to ac-
commodate another planet pair, the semi-major axis of
its specular body, the mythical planet Vulcan, would be
expected at aV ≈ 39.237/(18 ∗ 2)3/2 = 0.182 au be-
tween the Sun and Mercury. Relative to their neigh-
boring planets — Neptune and Mercury, respectively —
we have (aP /Ne)

2/3 = 1.195 ≈ 6/5 (Minor Third) and
(Me/aV )

2/3 = 1.65 ≈ 5/3 (Major Sixth), which are both
consonances.

By assuming Eris (aE = 67.9 au), which could rep-
resent the Scattered disk (a scarcely populated region
at the boundary of the solar system), and by doubling
again Eq. 17 to accommodate a second planet pair,
its specular scattered disk would be expected at aSz ≈
67.9/(18 ∗ 4)3/2 = 0.111 au. Relative to their neighbor-
ing planets — Pluto and Vulcan, respectively — we have
(aE/aP )

2/3 = 1.44 ≈ 45/32 (Tritone) and (aV /aSz)
2/3 =

1.39 ≈ 45/32 (Tritone), which are both dissonant tones,
as scattered regions would suggest.

Beyond the Scattered disk there is only the Oort cloud.
Thus, the Kuiper belt and the Scattered disk could

be specular to the hypothesized vulcanoid asteroid belts
and gaps, which could theoretically exist inside the or-
bit of Mercury at distances of 0.06-0.21 au from the Sun
(Evans et al., 1999).

With the last considerations, we have completed the
description of the solar system with a single scaling-
mirror equation: Eq. 17 plus Eq. 23, plus its possible
extensions obtained by doubling it for each pair of addi-
tional specular bodies or gravitational bands.

10 Discussion

The dynamics of celestial bodies follow the laws of gravi-
tation complemented by some dissipative processes. The
problem is that, even in the simplest case of three bod-
ies interacting gravitationally, a closed-form solution for
this case does not exist. However, empirical evidences
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suggest that orbital systems can self-organize in alterna-
tive synchronization structures which are not yet fully
understood.

In the specific case of the solar system, we found that
the rewriting of the Geddes – King-Hele equations in
the proposed new form yields a very compact and ele-
gant expression — Eq. 16 or, equivalently, Eqs. 17, 18,
and 19 — which appears to disclose the hidden gravi-
tational self-organization structure of our planetary sys-
tem. When raised to the 2/3 power (a non-linear trans-

formation), the orbits of the planets show a rational or-
ganization that is not apparent in the non-transformed
orbital parameters. The fact that the 2/3 exponent
minimizes the deviations and the planetary equations
are more accurate than alternative harmonic resonance
models, supports the robustness of our result.

Figure 7A graphically represents the or-
bital scaling and mirror-symmetries of the so-
lar system in the following compact equation:

1

(
aNe
aMe

) 2
3

≈ 2

(
aUr
aV e

) 2
3

≈ 4

(
aSa
aEa

) 2
3

≈ 8

(
aJu
aMa

) 2
3

≈ 16

(
a7:3
a3:1

) 2
3

≈ 18, (25)

which links together the eight planets of the solar sys-
tem plus the asteroid belt by highlighting the scaling and
mirror symmetries among their semi-major axis lengths
according to the 12-TET model of the Geddes – King-
Hele equations. The above equation has a clear aesthetic
appeal, and its five ratios have an accuracy of 99%.

Eq. 25 can also be further extended by doubling it
for each pair of additional mirror-symmetric bodies.
The first two possible extensions appear to have a
physical meaning because they would correspond to the
bands of the hypothesized vulcanoid asteroids versus
the transneptunian objects and to the internal and
external limits of the planetary disk of the solar system.
According to this model, the planetary disk of the solar
system would be constrained between two dissonant
regions, that is a divergent or scattered zone very close

to the sun (Sz) at about 0.1 au, and an equally divergent
specular region corresponding to the Scattered disk
(represented by Eris) and extending up to about 100
au from the sun. The asteroid belt, represented by
Ceres, at about 2.0-3.5 au divides the planetary disk
into an inner and outer region; this belt would also be a
dissonant-divergent zone. Then, the inner region split
into five rings would correspond to the orbits of Mars,
Earth, Venus, Mercury, and, finally, the hypothesized
Vulcanoid belt close to the sun. Similarly, the outer
region split into five rings would correspond to the orbits
of Jupiter, Saturn, Uranus, Neptune, and, finally, the
Kuiper belt (represented by Pluto). In this way, the plan-
etary disk of the Solar System would be fully described
by the following extended mirror-scaling equation:

1

(
aEr
aSz

) 2
3

≈ 2

(
aPl
aV u

) 2
3

≈ 4

(
aNe
aMe

) 2
3

≈ 8

(
aUr
aV e

) 2
3

≈

16

(
aSa
aEa

) 2
3

≈ 32

(
aJu
aMa

) 2
3

≈ 64

(
a7:3
a3:1

) 2
3

≈ 72, (26)

which is shown in Figure 7B. The two sequences suggest
that the orbital scaling-mirror symmetries of the solar
system are expressed by the Pythagorean epogdoon (the
tone ratio 9/8 = 18/16 = 72/64) and its addition with
one or more octaves.

Table 7 summaries the value and accuracy of each el-
ement of Eq. 26 obtained with the orbital data in Table
2. The equation was divided by 64 for normalization.
We found that each planetary-pair ratio differs from the
Pythagorean epogdoon (9/8) by at most 1%.

Both Eqs. 25 and 26 can be rewritten as functions
of the orbital periods or mean speeds by substituting
the exponent 2/3 with 4/9 and 4/3 as in Eqs. 18 and
19, respectively. This transformation does not allow us

to interpret the quotients as simple orbital period ra-
tios. Nor does it allow us to do so for orbital frequency
relations, which are simply the multiplicative inverses
of those derived from orbital periods. The traditional
understanding of a gravitational self-organization struc-
ture involves some form of linear relation among the
orbital frequencies and excludes the application of non-
linear transformations. Nevertheless, Eqs. 25 and 26
express relations of pure rational numbers as all quo-
tients are non-dimensional, which is a strong indication
of some kind of (still unknown) synchronization phe-
nomena that can emerge from planetary dynamics pro-
duced by adding more gravitational bodies and dissipa-
tive interactions (tidal forces, radiation pressure, fric-
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Figure 7: [A] Graphical representation of Eq. 25 expressing the scaling and the mirror symmetries among the semi-
major axis lengths of the eight planets of the solar system, including the central region of the asteroid belt, according
to the 12-TET model of the Geddes – King-Hele equations (99% accuracy). [B] Graphical representation of the
hypothesized scaling and mirror-symmetric planetary organization of the solar system according to the extended
model (Eq. 26). The ratio sequences are based on the Pythagorean epogdoon (the interval ratio 9/8 = 18/16 =
72/64) and its addition with up to six octaves.

Eq. 26 1
64

(
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) 2
3 1
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3 1
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(
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aEa

) 2
3 1

2

(
aJu

aMa

) 2
3

1
(
a7:3
a3:1

) 2
3

9/8

val. 1.125 * 1.125 * 1.137 1.113 1.128 1.134 1.118 1.125
acc. ( 100% ) ( 100% ) ( 101% ) ( 99% ) ( 100% ) ( 101% ) ( 99% )

Table 7: Value and accuracy of each element of Eq. 26 obtained with the orbital data in Table 2. ( * Theoretical).

tion, etc.). The question remains on how a non-linear
transformation of orbital periods forms these rational ra-
tios, and this represents a challenge from a dynamical
point of view that can be addressed in future research.
Nevertheless, the robustness of the results is impressive.
Once the exponent of the non-linear transformation is
optimized at k = 2/3 (as depicted in Figures 4 and 5),
the transformed orbital ratios between neighboring plan-
etary pairs are compatible not only with the tone rela-
tions of the traditional 12-TJI and 12-TET musical tun-
ing systems, but also specifically with their consonances.
The fact that the error is slightly smaller for just intona-
tion (12-TJI) compared with equal tempered (12-TET)
tuning may suggest that the solar system is mostly char-
acterized by super-particular ratios, that is by 3/2, 4/3,

5/4 and 6/5 (including Pluto) used in the former. More-
over, Eqs. 25 and 26 are based on the super-particular
ratio 9/8 (Major Second) multiplied by powers of 2. The
ratio 9 to 8 was known in Pythagorean music theory as
the epogdoon, which corresponds to the whole tone and
is derived from the Pythagorean consonances. By ex-
tending the mirror-scaling equation (Eq. 26) by two ad-
ditional rings and noting the planetary contiguous ratios
produced, we see that all musical tone relations from the
Major Second to the Major Sixth are represented in this
model.

The physical interpretation of the result is still based
on preliminary planetary models, analogies and specula-
tions.

For example, Pakter and Levin (2018) proposed a
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planetary model suggesting that, under specific con-
straints and energy non-conserving perturbations, a
planetary system could reach a self-organized periodic
state from arbitrary initial conditions. Their model, how-
ever, was simplistic and could not properly simulate our
solar system. Moreover, no simulation using more than
6 identical planets was stable.

Our proposed empirical planetary model of the solar
system is rather peculiar because it suggests a planetary
self-organization mechanism that does not directly in-
volve the traditional planetary commensurability mod-
els based on whole number ratios of orbital periods, as
usually proposed in the literature (cf.: Aschwanden,
2018; Peale, 1976). In fact, the a2/3 metric cannot be
directly interpreted using the third law of Kepler, Eq. 1,
because the latter links the orbital periods to a a3/2 met-
ric. Moreover, as demonstrated in section 3, the orbital-
period metric does not yield ratios between contiguous
planets of our solar system that could be expressed by
consonances. Thus, our solar system is not gravitation-
ally self-organized like, for example, the Trappist-1 solar
system.

Eqs. 13 may suggest an alternative orbital self-
organization process that could involve gravity accelera-
tions, and space and volume ratios instead of the orbital
period ones. For example, by assuming that the orbits
are circular (so that the semi-major axis coincides with
the orbital radius, a1 = R1 and a2 = R2), Eq. 7 with
k = 2/3 can be rewritten as:

(
a1
a2

) 2
3

=

(
R1

R2

) 2
3

=

(
m1

m2

F2

F1

) 1
3

≈ f (27)

where m1 and m2 are the masses of the two adjacent
planets, and F1 and F2 are the gravitational forces that
attract them toward the Sun (F = GM�m/R

2); for each
couple of adjacent planets, the frequencies f assume one
of the values 2n/12 with n = 4, 5, 7 and 8, or, alterna-
tively, f = 5/4, 4/3, 3/2 and 8/5. Thus, our result and
Eq. 27 indicate that the cube root of the ratio between
the centripetal orbital acceleration of adjacent planets of
the solar system can be interpreted as musical tones and,
more specifically, as consonances.

A 2/3rd power of an orbital radius could also be in-
terpreted as a geometrical transformation of an ellip-
soid of radius Re and fixed height H into an equal
volume sphere of radius Rs according to the equation
Rs =

3
√
HR2. In fact, the solar system is made of a plan-

etary disk and its geometry could be approximated by
an ellipsoid with a given height H. Thus, each plane-
tary orbit could be associated with an ellipsoid with or-
bital radius R and a constant height H, and could be
transformed into a sphere with radius R′ = 3

√
hR2. Our

results would then imply that the ratios of spherically
transformed orbital radii of adjacent planets of the solar

system express musical consonances as:(
R1

R2

) 2
3

=
R′1
R′2
≈ f. (28)

Table 1 reports the R′ values for each planet.
We also observe that in physics, equations where cube

frequencies appear are not frequent, but one of them is
the Planck’s law (or its Wien’s approximation) describing
the spectral density of electromagnetic radiation emitted
by a black body in thermal equilibrium at a given tem-
perature T (Planck, 1914). Finally, it is interesting to
note that the operation needed to obtain the above re-
sult from planetary distances – raising them to the 2/3
power – is somehow specular to the operation which re-
lates planetary distances to orbital periods by Kepler’s
third law, raising them to the 3/2 power (Eq. 1).

On whether the above or alternative analogies might
yield a physical relation between the relatively stable or-
bits of the solar system and the distribution of gravita-
tional energy in it linked to a 2/3rd power of the orbital
radii of the planets, is left to future investigations.

11 Conclusion

An interesting feature of the solar system is its specular-
reflection-like architecture which is made of four inner
terrestrial planets (Mercury, Venus, Earth and Mars) and
four outer gas-giant planets (Jupiter, Saturn, Uranus and
Neptune) divided by the asteroid belt. No other exoplan-
etary system similar to our has been discovered yet.

We have shown the Geddes–King-Hele equations for
mirror symmetries among the distances of the planets,
when raised to the 2/3rd power, express values that are
very close to the simple ratios found in the harmonic
consonances of the 12-TET and 12-TJI tuning systems
used in Classical and Western music. This result contra-
dicts the brief critique of Abhyankar (1983) that there
is “nothing particularly musical” in such equations. Of
course, herein, we intend for the word “musical” to re-
late to the presence of the ratios found in Classical tuning
systems which have specific mathematical properties.

Geddes and King-Hele noted the mirror symmetries
but not the scaling that we highlighted in our equations.
This result further contradicts Abhyankar (1983)’s claim
that such equations cannot tell us anything “about the
origin of the solar system or its stability”. In fact, it ap-
pears that our solar system could be interpreted by Eq.
25 (depicted in Figure 7) or Eq. 26 that relates the ratios
of planet pairs mirrored by the asteroid belt as a series
weighted by increasing powers of 2 of the Pythagorean
tone epogdoon (the 9/8 ratio).

The orbital radii of the inner planets can be predicted
from those of the outer ones, and vice versa, with a pre-
cision that is about three times superior to that of the
harmonic orbit resonance model recently proposed by
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Aschwanden (2018). In fact, it shows just a 0.8% aver-
age error (that is an accuracy larger than 99%) against
a 2.5% error of the alternative method. In addition, the
probability of finding only musical consonances among
such adjacent ratios has a p-value < 0.1%, which makes
it improbable that this is a random result. Furthermore,
our model could be extended to predict the inner gap
structure of the asteroid belt as well as the transneptu-
nian objects.

Furthermore, Eq. 23 (or Eq. 24) show that the coef-
ficient 18 in Eq. 16 is directly linked to the 3:1 and 7:3
resonances with Jupiter that, by virtue of its large mass,
has likely played a decisive role in the orbital architec-
ture of the solar system. This main role seems confirmed
in Figure 6A where the planetary predictions of Eq. 13
based on Jupiter (blue curve with circles) are well bal-
anced among the other series. The two cited resonances
characterize the main Kirkwood gaps of the asteroid belt.
Thus, although the physics behind such a result is not de-
termined yet, these empirical relations do not appear to
be coincidental.

We also determined that for exponents k close to 2/3
there is a convergent minimum both in the average and
maximum error between our proposed planetary metric
and both the 12 musical tones and the 7 harmonic conso-
nances. More specifically, for the solar system, such plan-
etary ratios are represented by harmonic musical conso-
nances that assume frequency values equal to 2n/12 with
n = 4, 5, 7 and 8, or, alternatively, 5/4 (Major Third),
4/3 (Perfect Fourth), 3/2 (Perfect Fifth) and 8/5 (Minor
Sixth). Interestingly, the seven planets of the Trappist-1
solar system (labeled b, c, d, e, f, g and h) present a set
of approximate orbital resonance ratios in the periods of
adjacent planets (from b↔c to g↔h) that includes the
same consonances: these are 8:5, 5:3, 3:2, 3:2, 4:3, 3:2
(cf. Agol et al., 2021; Gillon et al., 2017; Tamayo et al.,
2017), which correspond to the tones Ab, A, G, G, F
and G (with C as a reference tone). Thus, we suggest
that quasi-stable orbital systems could be characterized
by standard whole number ratios as those that charac-
terize the musical consonances. However, these ratios
can involve physical observables other than the orbital
periods. Therefore, alternative and/or complementary
orbital metrics should be considered for describing or-
bital systems.

In fact, mean motion resonances, in which the orbital
periods or mean angular velocities of planetary bodies
are in ratios of small integers, are commonplace in plan-
etary systems, both in our own solar system and in ex-
oplanetary systems. The Trappist system that we men-
tion is a good example, while in our own solar sys-
tem, a whole network of mean motion resonances ex-
ist among the inner satellites of Saturn, for example,
with many other examples existing elsewhere (e.g. As-
chwanden, 2018). These relationships are today well-
understood as they satisfy Kepler’s third law and can be
easily explained within the context of the laws of plan-

etary motion based on Newtonian gravity. The physical
mechanisms underpinning them, together with the secu-
lar and tidal evolution processes which bring them about
are well-established, and astrophysicists have a good un-
derstanding of the interplay between regular and chaotic
motion which is fundamental to these (and actually to
some degree all) dynamical systems. However, such find-
ings do not exclude the possibility of alternative physical
forms of self-organization of orbital systems which are
today still unknown or have not yet been investigated.

For our solar system, the consonant ratios among ad-
jacent planets emerge when the ellipsoid orbital radii are
transformed into equal-volume spherical radii using the
exponent k = 2/3, but for the Trappist-1 system, the or-
bital radii are to be transformed into periods using the
exponent k = 3/2. Thus, it appears that what happens
for the solar system cannot be easily explained in terms
of the usual Newtonian motion resonance approaches.
The evidence suggests that the exponent k could differ
for different orbital systems and the found k = 2/3 ex-
ponent may express an alternative metric capable of pro-
ducing a self-organizing orbital structure.

These different kinds of harmonic structures could in
the future be properly understood and classified as more
and more exoplanetary systems are discovered. This task
is made more difficult today because testing for a rela-
tionship such as Eq. 25 in exoplanetary systems may not
be possible until our knowledge of them is complete. In
fact, it is difficult to fully characterize detailed orbital in-
formation for all the large and small planets, in addition
to possible asteroid belts in distant exoplanetary systems.
The challenge for future research would be to justify the
proposed metric on physical grounds or to find a better
physical explanation for the self-organization of the solar
system, which, however, is today a matter of debate.

In conclusion, the ratios of the orbital radii of adjacent
planets of our solar system, when raised to the 2/3rd
power, express the simple ratios found in harmonic mu-
sical consonances and can be expressed by a simple, el-
egant, and highly precise equation that reveals scaling
and mirror-like symmetries of its planetary orbital distri-
bution relative to the asteroid belt, whose inner structure
is also predicted by the same model depicted in Figure
7. Eqs. 25 and 26 suggest that the orbital scaling-mirror
symmetries of the solar system could be expressed by the
Pythagorean epogdoon (the tone ratio 9/8) and its addi-
tion with up to six octaves. Furthermore, the ratio 9/8 is
closely related to the 3:1 and 7:3 resonances of Jupiter
that shape the asteroid belt (Eq. 24), which indicates the
primary role played by Jupiter in organizing the plane-
tary orbits of the solar system.

The mathematical correlation which we presented be-
tween idealized musical ratios and planetary data is very
similar to what Johannes Kepler was seeking when he
published his Harmonices Mundi in 1619. Our result fur-
ther indicates that the orbital movements of the major
bodies of the solar system are likely highly organized.
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Figure 8: A nice presentation of the solar system. This map shows in a logarithmic scale the orbit paths of the
planets of the solar system together with those of about 18,000 asteroids and comets larger than 10 km in diameter.
Adapted from Lutz (2019, CC BY-NC-ND 4.0).

In this regard, we would also like to point out that aes-
thetic perception of patterns in our surroundings is a fun-
damental dimension of the human culture, and it has
been crucial in the development of a scientific under-
standing of the natural world. Thus, our empirical model
could lead to the future discovery of important dynam-
ical structures of orbital systems, which today are still
unknown. The final paragraph of Geddes & King-Hele’s
original 1983 paper is worth quoting:

“The significance of the many near-equalities is
very difficult to assess. The hard-boiled may dis-
miss them as mere playing with numbers; but
those with eyes to see and ears to hear may find
traces of ‘something far more deeply interfused’
in the fact that the average interval between the
musical notes emerges as the only numerical con-
stant required - a result that would surely have
pleased Kepler.”
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Appendix

Eq. 26 can be rewritten also in the following forms that highlight better how each pairs of planets is directly linked
to the Pythagorean epogdoon ratio 9/8 (or 8/9):
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