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The Geometry of Musical Logarithms*

Daniel Muzzulini
Zurich/Lucerne

La géometrie permet de penser le discontinu et
le rend susceptible d’une analyse à la limite de
la continuité, tandis que le nombre intervient
pour compter des éléments apparament conti-
nus, et les rend alors discrets.1

It is generally acknowledged that Archimedes was close to
the invention of logarithms.2 The related ideas and calculation techniques were re-
developed and advanced in the sixteenth century by Christo� Rudolf and Michael
Stifel. The Dutchman Simon Stevin propagated the decimal number system and dec-
imal fractions toward the end of the sixteenth century. This laid the foundation for
the calculation techniques developed by John Napier and Jost Bürgi toward the turn
of the century, which were of great use in astronomy.

At the end of the year 1618, René Descartes o�ered his manuscript Musicæ Com-
pendium to Isaac Beeckman as a New Year’s gift. This early treatise by Descartes
was published only in 1650, shortly after Descartes’s death. According to H. Floris
Cohen, its content is retrospective rather than innovative.3 As a compendium, how-
ever, it is certainly not supposed to develop or propagate a new theory of music.
Still, it contains some intriguing diagrams that use the circle as a metaphor for the
octave similarity in combination with a logarithmic representation of musical ratios.

In 1618, the renowned publishing house of de Bry in Frankfurt published the sec-
ond tractate of the �rst volume of Utriusque cosmi historia, the encyclopedic opus
magnum by the English physician and philosopher Robert Fludd with some illustra-

* The author wishes to thank Martin Neukom (ICST Zurich) and Roman Oberholzer (KSALP
Lucerne) for their useful and critical comments, Lesley Paganetti (Basel) for proofreading and
interesting debates, and Benjamin Wardhaugh (All Souls College, Oxford) for proofreading the
�nal text. This essay was written in the course of research for the project Sound—Colour—Space:
A Virtual Museum, funded by the SNF Switzerland (105216_156979), at ICST Zurich and ith Zurich.

1 Frédéric De Buzon, “Science de la nature et théorie musicale chez Isaac Beeckman,” Revue d’histoire
des sciences 38, no. 2 (1985): 119.

2 Erwin Voellmy, Jost Bürgi und die Logarithmen (Basel: Birkhäuser, 1948; repr., 1974), 2–5, and Jörg
Waldvogel, “Jost Bürgi and the Discovery of the Logarithms,” Elemente der Mathematik 69, no. 3
(2014): 91–92.

3 He calls it “Zarlino more geometrico” (H. Floris Cohen, Quantifying Music: The Science of Music at
the First Stage of the Scienti�c Revolution, 1580–1650 [Dordrecht: D. Reidel Publishing, 1984], 163).
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2 Daniel Muzzulini

tions by Matthäus Merian. This part of Utriusque cosmi historia contains the Tem-
plum Musicæ.4 Fludd’s music theory is based on a Pythagorean mode of thinking,
and at its most modern refers to the ars nova/ars subtilior-period of the fourteenth
century. Fludd was an adherent of the Ptolemaic cosmology, according to which the
sun and the other planets circulated around the earth. His interest in and defense
of the Rosicrucian movement might have been detrimental for a positive reception
of his work on the continent by the philosophers of the new age of mechanization,
Kepler, Mersenne, and Gassendi.5

In comparison with Descartes’s “Zarlinoism,” Fludd’s tone system appears outda-
ted. While Fludd defended the ratio 81 : 64, the Pythagorean ditonus, Descartes con-
structed the diatonic scale with consonant thirds in the ratio 5 : 4, as suggested by
Giose�o Zarlino in the second half of the sixteenth century.

In 1619, Johannes Kepler published Harmonices mundi.6 Book 3 (the section on
music theory) uses geometry in order to determine the consonant intervals. He
claims a correspondence between the regular polygons that are constructible by
ruler and compasses and Zarlino’s system of consonances. Thus, constructibility acts
as a natural selection criterion. Kepler assumed that 5 is the highest prime number
for which a regular polygon can be constructed with ruler and compasses. However,
in the early nineteenth century Carl Friedrich Gauss proved that the regular poly-
gons with 17 and 257 vertices were also constructible with ruler and compasses. In
the appendix of Harmonices mundi, Kepler criticized Fludd’s Utriusque cosmi historia
marking the beginning of a long and bitter controversy.7

In 1620, Arithmetische und geometrische Progreß-Tabulen by Jost Bürgi were
printed in Prague. Its title page shows a circular diagram, which is very similar
to Descartes’s circular diagrams. At the time Bürgi had been using his tables for
more than ten years.8 Because only a few printed copies of Bürgi’s excellent Arith-
metische und geometrische Progreß-Tabulen have survived, it is conceivable that the
“publication” in 1620 was merely a test print. And the long period of the Thirty
Years’ War in Germany, 1618–48, may have prevented Bürgi’s work from becoming
more generally known.9

4 Fludd’s second tractate was shown at the Frankfurt book fairs in spring 1618 where Kepler had
seen it; cf. Peter Hauge, “The Temple of Music” by Robert Fludd (Burlington, VT: Ashgate, 2011), 22,
fn. 80.

5 Cf. Max Caspar in Johannes Kepler, Gesammelte Werke, vol. 6, Harmonice Mundi, ed. Max Caspar
(Munich: Beck’sche Verlagsbuchhandlung, 1940), 513–21.

6 Ibid., 7–377.
7 Ibid., 373–77. Kepler’s approach will not be discussed any further here; cf. Cohen, Quantifying

Music, 13–34.
8 Fritz Staudacher, Jost Bürgi, Kepler und der Kaiser (Zurich: NZZ Libro, 2013), 197.
9 Ibid., 203–4.
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The Geometry of Musical Logarithms 3

René Descartes’s Aesthetic Principles and Musical Diagrams

In the Musicæ Compendium, the young Descartes recapitulated the state of music
theoretical thinking as propagated by Zarlino10 in the sixteenth century. Completed
by the end of 1618, he o�ered the manuscript to his new friend Beeckman. The
Prænotanda presented a system of aesthetic principles underlying the organization
of the horizontal time and the vertical pitch/frequency domains of music theory.
Descartes accepted only small integer ratios as fundamental and “understandable
by the senses”—seeing and hearing—and he pointedly argued in favor of arithmetic
against geometric division of ratios.11

He illustrates the two ways of dividing ratios with line segments 2 : 3 : 4 against
2 :
√

8 : 4 (see �gure 1). The arithmetic mean of the outer terms 2 and 4 is 3 because
of 3 = 1/2 · (2 + 4), the geometric mean of the outer terms 2 and 4 is

√
8 because of√

8 =
√

2 · 4.

Fig. 1. Arithmetic and geometric division of the octave according to René Descartes, Musicæ
Compendium (Utrecht: Zijll, 1650), repr. in Descartes, Œuvres de Descartes, vol. 10, ed. Charles

Adam and Paul Tannery (Paris: Léopold Cerf, 1908), 91 and 92.

The word geometric in geometric mean originates in the standard geometry problem
of transforming a given rectangle into a square of equal area; in Descartes’s example,
turning the rectangle having sides 2 and 4 into a square of area 8. The sides of this
square measure

√
8 units. The fact that the value of the square root of the product

of two numbers is always between the two numbers justi�es the word mean in
geometric mean.

By combining Euclid’s altitude theorem with Thales’s theorem, the geometric
mean can be found by using a geometrical construction, known also by music theo-
rists. The construction by Lodovico Fogliano in �gure 2a shows the construction of
the geometric mean of the numbers 80 and 81. In other words, it serves to determine
geometrically the square root of 80 · 81 = 6480, resulting algebraically in 80.498, a
value very close to the arithmetic mean 1/2 · (80 + 81) = 80.5. This example would
not be given in a modern geometry text book in order to explain the two kinds of
means, because a rectangle with sides of 80 and 81 is almost a square. Descartes’s

10 Giose�o Zarlino, Le istitutioni harmoniche (Venice, 1558; 3rd ed., 1573); Zarlino, Dimostrationi har-
moniche (Venice: Francesco dei Franceschi Senese, 1571).

11 Cohen, Quantifying Music, 161–79; Daniel Muzzulini, Genealogie der Klangfarbe (Bern: Peter Lang,
2006), 35–37; Muzzulini, “Descartes’ Töne—Newtons Farben,” in Musik—Raum—Akkord—Bild:
Festschrift zum 65. Geburtstag von Dorothea Baumann, ed. Antonio Baldassarre (Bern: Peter Lang,
2012), 691–706.
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example would be more convincing in this respect, because
√

8 ≈ 2.828 can be
visually distinguished from 1/2 · (2 + 4) = 3 (see �gure 2b). Note that in the con-
struction of the geometric mean the arithmetic mean equals the radius of the circle.

Fig. 2a. Construction of the geometric mean by
Fogliano (Lodovico Fogliano, Musica theorica

[Venezia, 1529], fol. xxxvi).

Fig. 2b. Descartes’s example in the light of
Fogliano’s construction.

Both examples are tied to music theoretical questions in the pitch domain. Fogli-
ano’s construction bisects the syntonic comma, 81 : 80, into two equal musical in-
tervals.12 The resulting syntonic semi-comma can be used in order to divide the third
(5 : 4) into two equal whole tones (

√
5 : 2 ≈ 1.1180 : 1) by lowering the major tone

(9 : 8) by a semi-comma or by increasing the minor tone (10 : 9) by a semi-comma.
These tempered whole steps are used in meantone tuning systems. The syntonic
comma is equal to the intervallic di�erence between the major and the minor whole
tone. Its ratio is obtained by dividing the ratio of the major tone by the ratio of the
minor tone: 9/8 : 10/9 = 9/8 · 9/10 = 81/80 = 81 : 80.

Descartes’s juxtaposition bisects the musical octave (2 : 1) arithmetically into a
�fth (3 : 2) and a fourth (4 : 3) and geometrically into equal semi-octaves, tritones
or diminished �fths of the irrational ratio

√
2 : 1.13

The comparison of arithmetic and geometric ratios is carried out by Descartes
in a continuous “geometrical” context, since the geometric and arithmetic ratios are
both visualized by ratios of lengths of line segments. In other words, the discrete
integer numbers are understood a priori as a part of a comprehensive continuum.
There is no better way to compare arithmetic ratios with geometric ratios in general.

It is essential for Descartes’s choice of numbers in �gure 1 that the geometric
ratio

√
2 is an irrational number. The proportions 8 : 13 : 18 (arithmetic progres-

12 Equal musical intervals are de�ned by equal frequency ratios.
13 Classical music theory distinguishes between harmonic and arithmetic division. For example,

3 : 4 : 5 is arithmetic division, but 1/3 : 1/4 : 1/5, the ratio of the reciprocals is harmonic divi-
sion, a distinction Descartes does not make.
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The Geometry of Musical Logarithms 5

sion with common di�erence d = 5) and 8 : 12 : 18 (geometric progression with
common ratio r = 3/2) would not have been su�cient for him to reject geometri-
cal ratios in such a rigorous way: The number 13 from the arithmetic division of
the major ninth (18 : 8 = 9 : 4) is not used in traditional music theory, whereas
the geometric division of the same interval into two �fths would make much more
sense.

Because of their irrational ratios, Descartes’s aesthetic principles exclude equal
temperament as not understandable by the sense of hearing. The Musicæ Com-
pendium explains the tone system with three congruent diatonic hexachords sep-
arated by �fths sized 3 : 2. This results in a range of two diatonic major scales cen-
tered on f and c with the pitch classes c, d, e, f, g, a, b-�at, b (see �gure 3d). Descartes’s
tone system has two ambiguous tones d (320/324) and g (480/486 where c = 360). The
two values of these “mobile tones,” d and g, di�er by a syntonic comma and are
clearly distinguished in the drawings.14 The numbers in the continued proportions
given by Descartes represent string lengths on the monochord (or time periods) and
not frequencies. The frequency interpretation of pitch was not yet well established
at the time.15

The eye-catching feature of Descartes’s diagrams (�gure 3) is the use of the cir-
cle for visualizing the octave similarity. Descartes is the �rst to express the octave
systematically as a full 360° angle. However, Robert Fludd, who uses the circle very
frequently in his illustration, is very close to such an interpretation in the Templum
Musicæ published in 1618 (see �gure 6a below).

The diagrams in the �rst printed Latin editions of Descartes’s Musicæ Com-
pendium (1650 and 1656), are rather accurate in the following sense: equal musical
intervals, that is, equal number ratios, are represented by equal circular sectors, so
that the full octave corresponds to the full circle of 360°. Furthermore, the relative
size of the di�erent intervals is expressed in the ratios of angles.

A detailed investigation of Descartes’s circular diagrams reveals that the angle
of the tritone is usually equal to 180°, and some of the minor thirds are equal to
90°. Some of the minor tones are even greater than major tones. Essential features
of Descartes’s diagrams are their inner symmetries, which were deliberately aban-
doned in the early English edition.16 The mirror and rotational symmetries follow
directly from the logarithmic understanding of pitch.

14 The musical context decides which of the ambiguous tones is to be used (Descartes, Musicæ Com-
pendium, 117–19).

15 Exceptions are Giovanni Battista Benedetti, “De intervalli musicis,” in Diversarum speculationum
mathematicarum et physicarum liber (Turin, 1585), 277–83, and Beeckman (1614), who indepen-
dently developed a pulse theory of sound: C. de Waard, ed., Journal tenu par Isaac Beeckman (The
Hague: Martinus Nijho�, 1939), 1:56–57 (fol. 24v, 1614); cf. Cohen,QuantifyingMusic, 75–78, 94–97,
and 127–47.

16 Benjamin Wardhaugh, “Musical Logarithms in the Seventeenth Century: Descartes, Mercator,
Newton,” Historia mathematica 35, no. 1 (2008): section 3; Wardhaugh, ed., The “Compendium Mu-
sicæ” of René Descartes: Early English Responses (Turnhout: Brepols, 2013), xxxi–xxxii.
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Fig. 3a. The consonant intervals within the
octave (Diapason). Descartes, Musicæ

Compendium, 104.

Fig. 3b. The corresponding diagram in
Beeckman’s copy of Descartes’s manuscript (Ms.

Middleburg, fol. 167r): The angle of the minor
third is bigger than 90°. Because the radial line at
D does not pass through the center of the circles,
the related angles cannot be measured accurately.

Fig. 3c. The diatonic major scale, starting at ut
= 540 in clockwise direction with an ambiguous
tone (486/480), separated by a syntonic comma,
which Descartes calls “Schisma.” The diagram is

symmetric about the bisector of the syntonic
comma. The radii de�ning the tritone and the
diminished �fth (at 405 and 288) are on the
horizontal diameter of the circle. Descartes,

Musicæ Compendium, 118.

Fig. 3d. The three hexachords from F (540), C
(360), and G (480) have congruent angles, each

given with relative solmization (ut, re, mi, fa, sol,
la). There are two ambiguous pitch classes at G

and D. The leading notes B quadratum (384) and
E (288) are major thirds (mi) from the tonic (ut)
of the adjacent hexachords. Also in this diagram
the diminished �fths (540–384 and 405–288) “mi
contra fa” (the devil in music) are on diameters of
the circle. Descartes, Musicæ Compendium, 120.
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The Geometry of Musical Logarithms 7

The manuscript of the Musicæ Compendium is lost. The earliest of the extant
manuscript copies was made for Isaac Beeckman about 1628.17 Assuming that
Descartes’s own drawings were as accurate as in Beeckman’s copy, it must be con-
cluded that he had a feeling for logarithms at a time when they just have been made
public. Where did he gather the necessary knowledge of mathematics?18

In 1614, the Scottish mathematician John Napier published his �rst tables,Miri�ci
logarithmorum descriptio. However, these tables were of direct use in astronomy,
not in musical arithmetic,19 and the circular diagram by Jost Bürgi, the title page
of his Arithmetische und geometrische Progreß-Tabulen (1620, see �gure 4), which
is much easier to understand, had not yet been printed when Descartes composed
the Musicæ Compendium. Although Bürgi’s tables were completed in 1609 or even
earlier,20 it can be excluded that Descartes knew of them, because Bürgi kept them
secret.

Jost Bürgi’s Mathematical Diagram in Its Relation to Descartes’s
Circular Pitch Diagrams

Descartes’s diagrams (�gures 3c and 3d) and the diagram on the title page of Bürgi’s
Arithmetische und geometrische Progreß-Tabulen (�gure 4) are closely related. The
(red) numbers of the outer circle in Bürgi’s diagram are in arithmetic progression,
where equal steps correspond with equal angles. They form a linear scale for an-
gles. The (black) numbers of the inner circle are in geometric progression, so that
equal angles correspond to equal ratios of black numbers. A full rotation results in
a multiplication by 10. Bürgi’s black numbers play the same role as the numbers
in Descartes’s diagrams, where equal ratios also have equal angles. A full rotation
in Descartes’s diagrams results in a multiplication by 2. The use of the same inter-
val names for equal sectors is the application of a linear scale in the pitch domain
comparable with Bürgi’s scale on the outer red circle.

17 René Descartes, Abrégé de musique: Compendium Musicæ, ed. Frédéric de Buzon, 2nd ed. (Paris:
Presses universitaires de France, 2012); Wardhaugh, “Musical Logarithms in the Seventeenth Cen-
tury,” section 3.

18 The mathematical and musical formation that Descartes obtained at the Jesuits’ College La Flèche
is discussed in Stephen Gaukroger, Descartes: An Intellectual Biography (Oxford: Clarendon Press,
1995), 55–59; Chikara Sasaki, Descartes’s Mathematical Thought (Dordrecht: Kluwer Academic
Publishers, 2003), 13–44; Ivo Schneider, “Trends in German Mathematics at the Time of Descartes’
Stay in Southern Germany,” inMathématiciens français du XVIIe siècle: Descartes, Fermat, Pascal, ed.
Michel Serfati and Dominique Descotes (Clermont-Ferrand: Presses universitaires Blaise-Pascal,
2008), 45–68.

19 Thomas Sonar, 3000 Jahre Analysis: Geschichte, Kulturen, Menschen (Heidelberg: Springer, 2011),
296–301.

20 Staudacher, Jost Bürgi, Kepler und der Kaiser, 197; Waldvogel, “Jost Bürgi and the Discovery of the
Logarithms,” 89.
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Fig. 4. Jost Bürgi, Arithmetische und geometrische Progreß-Tabulen (Prague: Paul Sessen, 1620), title
page. The outer ring is colored red in the original print.

Bürgi’s circle closes at 10, because the decimal number system repeats with a multi-
plication by 10. Descartes’s circles close with a multiplication by 2, because it gen-
erates notes of the same pitch class. In other words, 135, 270, and 540 denote equiv-
alent notes in di�erent octaves. In the surrounding text Descartes insists that the
natural way of studying the consonant intervals and musical scales is by bringing
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The Geometry of Musical Logarithms 9

them into an octave,21 however, he does not comment on the angles in his diagrams,
since he must have thought their meaning self-evident.22 The mathematical trans-
formation from frequencies to pitch classes is summarized in �gure 5.

Fig. 5. Pitch classes are formed by a composite mathematical transformation. The �rst, base 2
logarithm, maps frequency onto pitch, the second, modulo 1 (times 360°), maps pitch onto

pitch classes on the circle line. The clockwise oriented triangle corresponds to a major triad
(4 : 5 : 6) with the tonic on top of the circle.

Robert Fludd’s Circular Diagrams

The circle in its perfect symmetry is present in every topic Robert Fludd stud-
ied—from divine numbers to the colors of urine. The following two examples are
taken from the Templum Musicæ and from De Numero et Numeratione.23

The �rst drawing (�gure 6a) resembles Descartes’s diagrams in many ways: It
is a circular arrangement, it consists of concentric circles, and it is about music.
Furthermore, it uses a “logarithmic” presentation by equating the size of musical
intervals with distances. It shows three octaves of the chromatic scale on concentric
rings. The letters indicate the position of the frets on the lute (“barbitum”) in al-
phabetical order, and the numbers indicate the strings with its lowest 1 and highest
6. Both dimensions, the radial and the angular, display chromatic scales. The radial

21 Descartes, Musicæ Compendium, 98–105.
22 He only states that a full circle comprises an octave (Descartes, Musicæ Compendium, 103–4).
23 Robert Fludd,Utriusque cosmimaioris scilicet et minoris metaphysica, physica atque technica historia

in duo volumina . . . divisa, vol. 1, tract. 2, part 2, lib. 6, De Instrumentis Musicis vulgariter notis
(Oppenheim: Aere Johan Theodori de Bry, 1617), 232; ibid., vol. 1, tract. 2, part 1, lib. 1, De Numero
et Numeratione, 9.
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direction covers one octave and the circular scale uniformly covers three octaves.
In the surrounding text Fludd tells us that the vertical scale (North) is meant to be a
spinning pointer, so that the drawing represents a mechanical device for lute play-
ers, allowing them to transpose their part quickly if necessary.24 The tuning of the
lute can be guessed by analyzing the cells with two designations. It turns out to be
G-C-F-A-D-G, which is consistent with Fludd’s drawing of the fretboard of the lute
with the notes indicated by their position in the stave (see �gure 7).25

The three octaves express a metaphysical idea manifest in many of Fludd’s draw-
ings. The number Three is a holy number for Fludd because it is the �rst that has
a beginning, a middle part, and an end. In the same mode of thinking, the perfect
division in the Middle Ages is ternary and not binary.26

The second diagram (�gure 6b) is taken from De Numero et Numeratione.27 It
explains the decimal number system within a logarithmic presentation giving the
powers of 10 in counterclockwise direction. The nine digits 1 to 9 of the outermost
circle get equal sectors. The second circle groups the nine sectors as three times
1-2-3, which indicates the three positions Ones, Tens, and Hundreds within each of
the three groups, Units, Thousands, and Millions.28

Notice that 0 does not occur as a number of its own right in Fludd’s Speculum;
the digits in the inner circles run from 1 to 9. Zero is not seen as a proper number—it
is merely an articulation sign indicating an empty position. Forming numbers from
the Speculum is combinatorics: selecting from each sector a digit or an articulator.
Thereby, every positive integer number less than one billion can be formed.

Actually, zero (the devil in numbers) would disturb the “perfect order” of three
times three. In the diagram neither the closing of the system with nine digit num-
bers nor the choice of the circular arrangement is intrinsically motivated. As a me-
chanical device, however, it would be more easily made with rotating disks and a
spinning pointer than with straight sliders.29 The diagram resembles Ramon Llull’s
(ca. 1232–1316) concentric circles, which are also mechanical tools.30 In order to

24 Fludd uses the word “rota” (“wheel”): “Tunc convertendo rotam L invenio a.6. in loco ejusdem
spharae. 25. & sub ipso in orbe. A.re.c.6.” (ibid., vol. 1, tract. 2, part 2, lib. 6, 232 [= Hauge, “The
Temple of Music” by Robert Fludd, 188]).

25 Ibid., vol. 1, tract. 2, part 2, lib. 6, 230.
26 Ibid., vol. 2, tract. 1, sect. 1, lib. 1, De Numeris Divinis, 26 and 35–36.
27 Ibid., vol. 1, tract. 2, part 1, lib. 1, 9. At the end of this book, Fludd recommends Michael Stifel for

further reading (ibid., vol. 1, tract 2, part 1, lib. 3, De Arithmetica Cossica, Epilogus, 79). Stifel treats
musical intervals and scales in a way very similar to Zarlino (Michael Stifel, Arithmetica Integra
[Nuremberg: Johannes Petreius, 1544]).

28 Since the numbering starts at 1 and not at 0, the formula 10n10m = 10n+m remains hidden.
29 For the history of slide rules, cf. Florian Cajori, History of the Logarithmic Slide Rule (Colorado

Springs: School of Engineering, Colorado College, 1909), and Cajori, “On the History of Gunter’s
Scale and the Slide Rule during the Seventeenth Century,” University of California Publications in
Mathematics 1, no. 9 (1920): 187–209.

30 Ramon Llull, Ars brevis Illuminati Doctoris Magistri Raymundi Lull (Lugduni: Stephanus Baland,
1514), �g. 4. The author owes the conjecture of a possible link between Llull’s and Descartes’s
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The Geometry of Musical Logarithms 11

Fig. 6a. Transposition circle for the lute
(barbitum).

Fig. 6b. Numerationis Speculum.

Fig. 7. Fretboard of the barbitum (Fludd, Utriusque cosmi, vol. 1, tract. 2, part 2, lib. 6, 230).
This picture con�rms the tuning derived from �gure 6a.
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turn Fludd’s Speculum into a working mechanical tool, it would be necessary to in-
terchange the roles of the radial and the angular dimension, so that the individual
numbers could be read o� in radial direction.

To sum up, the transposition circle (�gure 6a), as a two-dimensional arrangement
of chromatic scales with equal semitones, is a double logarithmic representation in
polar coordinates, whereas the Numerationis Speculum (�gure 6b) combines a radial
linear dimension with a logarithmic angular dimension.

Constructing Geometric Progressions

Descartes’s Musicæ Compendium shows that in 1618 he was familiar with geometric
sequences and possibly also with fractional powers. He certainly knew that multi-
plying ratios corresponded to adding musical intervals. This was already evident
from the numbers added to the circular diagrams. However, this was standard in
music theory since Boethius and well known through the sixteenth century.31 In
La Géometrie (1637) Descartes referred to the problem—posed by Pappus of Alexan-
dria (ca. 290–350 CE)—of determining several intermediate proportional numbers
between two given numbers.32 In order to solve this problem, Descartes depicted a
mechanical instrument that permitted drawing the graphs of power functions, if a
unit length was de�ned in the geometric plane (see �gure 8).33

Fig. 8. Descartes’s instrument (mesolabe compasses) for constructing geometric progressions and
power functions (dotted curves).

diagrams to a conversation with Angela Lohri (Vienna). One of Descartes’s combinatorial matrix
diagrams not shown here occurs also in Ramon Llull’s Ars brevis.

31 Fogliano, Musica theorica; Stifel, Arithmetica Integra; Zarlino, Le istitutioni harmoniche; Zarlino,
Dimostrationi harmoniche.

32 René Descartes, “La Géometrie,” in Descartes, Discours de la méthode pour bien conduire sa saison et
chercher la vérité dans les sciences (Leiden: Jan Maire, 1637), repr. in Descartes, Œuvres de Descartes,
6:306; cf. Gaukroger, Descartes: An Intellectual Biography, 93–99.

33 Descartes, “La Géometrie,” 318 and 370–71.
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The Geometry of Musical Logarithms 13

For any opening angle (less than 90°) of the legs YX and YZ, the line segments be-
tween the two legs form a geometric progression, because all triangles are similar.
This instrument is called the “mesolabe compasses.” With many and su�ciently
long rulers, it admits—in principle—the construction of arbitrary powers of any real
base greater than 1, which is impossible with ruler and traditional compasses. With
twelve rulers the values of the twelve-tempered equal tuning could be found.

The main ideas in Descartes’s analytical geometry were developed in the 1620s,
soon after the completion of the Musicæ Compendium.34 Descartes in 1637 did not
give a hint that the mesolabe compasses could be used mechanically to determine
the frets of lutes, and he never again published on music theory.35

Comparing the Octave Indirectly with the Syntonic Comma

Syntonic versus Pythagorean Comma

Boethius knew the estimation 75/74 < 531,441/524,288 < 74/73 of the Pythagorean
comma. Faber Stapulensis (1496; 1551) and Michael Stifel (1544) carried out the
more demanding measuring of the Pythagorean semitone (256 : 243) in terms of
Pythagorean commas.36

The syntonic comma (81 : 80) is a little bit smaller than the Pythagorean comma.
It is de�ned by a super-particular ratio (n+1/n where n = 80) and has a short decimal
representation 1.0125, whereas the ratio of the Pythagorean comma is neither sim-
ple nor super-particular. Therefore, the syntonic comma can serve as a unit interval
in order to measure the size of the other intervals. Without decimal fractions, the use
of super-particular ratios of small intervals (big values of n) as multiplicative units
is the simplest way of comparing the size of musical intervals. In the Pythagorean
tone system, however, the syntonic comma simply does not exist.

Vincenzo Galilei’s Semitones

In 1581, Vincenzo Galilei remarked that 18 : 17 provided an excellent approximation
of the semitone in equal temperament. It was indeed the best “semitone” of the form
n+1/n to approximate twelve-tempered equal tuning: (18/17)2 = 1.9856 ≈ 2. Already

34 Gaukroger, Descartes: An Intellectual Biography, 99–103.
35 In his correspondence with Mersenne music theoretical questions are addressed frequently, for

example overtones in 1633, Descartes, Œuvres de Descartes, 1:267–68. Cf. Muzzulini, Genealogie
der Klangfarbe, 126–29.

36 Boethius, De institutione arithmetica libri duo, De institutione musica libri quinque, vol. 3, De insti-
tutione musica, ed. Godofredus Friedlein (Leipzig: Teubner, 1867), 286: “In qua numerorum propor-
tione sit comma et quoniam in ea, quae maior sit quam .LXXV. ad .LXXIIII. minor quam .LXXIIII.
ad .LXXIII.” Jacobi Faber Stapulensis (= Lefèvre d’Etaples),Musica libris quatuor demonstrata (Paris:
Gulielmum Cauellat, 1552), 2:35; Stifel, Arithmetica Integra, no pagination between 72 and 76.
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Ptolemy knew the relationship 18/17 <
√

9/8 < 17/16,37 which was true because the
middle term is the geometric mean of the outer terms (see �gure 9). The inequality
states that two semitones 18 : 17 are smaller than a major tone 9 : 8 and that two
semitones 17 : 16 are greater than a major tone.

Fig. 9. Division of the whole tone 9 : 8 into two semi-tones 17 : 16 and 18 : 17
(Zarlino, Dimostrationi harmoniche, 166).

The ratio 18 : 17 was used to determine the positions of the frets in lutes, for which,
for practical reasons, equal temperament was early accepted as a compromise. In
1619, Kepler calculated the related string lengths and compared them with his own
chromatic scale.38

Comparing the syntonic comma 81 : 80 with the semitones 18/17 ≈ 1.05882
leads to approximately nine syntonic commas per two semitones 18 : 17, and to
9·6 = 54 syntonic commas per octave. The exact value is 55.8 syntonic commas per
octave, which gives a syntonic comma of 360°/55.8 = 6.45°.39 Determining the whole
tone 9 : 8 as approximately nine syntonic commas and the octave as approximately
six whole tones also gives approximately 54 syntonic commas per octave.

37 Cris Forster, Musical Mathematics: On the Art and Science of Acoustic Instruments (San Francisco:
Chronicle Books, 2010), 354.

38 Cohen, Quantifying Music, 68; Kepler, Gesammelte Werke, 5:143. However, he could have picked
these values directly from Stevin’s tables of interest: Tafel van Interest van den penninck 17 (1582).
Dirk J. Struik, ed., The Principal Works of Simon Stevin, vol. 2, Mathematics (Amsterdam: Swets &
Zeitlinger, 1958), 75.

39 The angles of the syntonic comma in the diagrams of the early French and Latin editions of
Descartes’s compendium vary between 5° and 14°, Descartes, Abrégé de musique, 100–1 and 104–5.
See �gure 3 above for reproductions of some of the diagrams.
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It can be seen directly that the whole tone 9 : 8 must be smaller than ten syntonic
commas: 9/8 = 90/89·89/88·88/87·87/86·86/85·85/84·84/83·83/82·82/81·81/80 < (81/80)10.
The last fraction in the product representation of the whole tone is the biggest factor,
which implies the inequality. Since the octave is less than six whole tones 9 : 8, the
octave must be smaller than sixty syntonic commas, resulting in a syntonic comma
greater than 6°. Even a syntonic comma of 6° leads to diagrams that are at least
as accurate as those in Beeckman’s copy and the early Latin printed editions of
Descartes’s Musicæ Compendium.

Comparing the Tritone with the Diminished Fi�h

In order to create a circular diagram of the diatonic scale for didactical purposes
it would be desirable not only to distinguish visually the major whole tone (9 : 8)
from the minor whole tone (10 : 9) but also to make the tritone (two major whole
tones plus one minor whole tone) di�erent from 180°: The di�erence between the
diminished �fth (64 : 45) and the tritone (45 : 32) is equal to 64/45 : 45/32 = 2048 :
2025 = 1.01136, which gives 177.1° for the augmented fourth 45 : 32 and 182.9° for
the diminished �fth 64 : 45. In other words, the di�erence between the two angles is
comparable with the angle of a syntonic comma. Descartes’s diagrams do not make
this distinction at all.

Stevin and Beeckman

Today it seems to be clear that the twelve-tempered intervals, multiples of 30° (a
semitone), could also have served as points of reference in Descartes’s diagrams.
As already mentioned, some of the minor thirds in Descartes’s diagrams are indeed
equal to 90° (three semitones) and the tritone is usually equal to 180° (six semitones).

The �rst and very accurate numerical values of the ratios of the twelve-tempered
equal tuning can be found in Simon Stevin’s Vande Spiegheling der Singconst. A neg-
ative feedback by the organist Abraham Verheyen in ca. 1608 might have prevented
Stevin from publishing this text.40 In 1624, Beeckman borrowed the manuscript from
Stevin’s widow,41 and in his diary he mentioned Stevin’s description of the �fth as
the twelfth part of seven octaves by 12√128.42 Beeckman, however, knew Stevin’s
Mathematical Memoirs (1605/8) much earlier. He referred to Stevin’s writings from
1612 onwards, with respect to music theory and geometric division of musical ratios
in 1613/14 and in 1618.43

40 Cohen, Quantifying Music, 61–63.
41 Later on, Stevin’s manuscript was in the hands of Constantin Huygens and eventually published

in 1884; cf. Waard, Journal tenu par Isaac Beeckman, 2:292, 2:Appendix (fol. 228r–v), and 403–5.
42 Ibid., 2:291–92 (fol. 194r, 16–24 June 1624, Flemish); cf. Cohen, Quantifying Music, 185.
43 Waard, Journal tenu par Isaac Beeckman, 1:29 (fol. 14r, July 1613–April 1614); ibid., 1:180–81

(fol. 74v, April–25 June 1618).
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In 1616, Beeckman wrote that multiplying ratios corresponds to adding musi-
cal intervals and he distinguished between the Pythagorean and the syntonic thirds
explicitly: “Verus enim ditonus est 80/64, id est 5/4, eorum verò 81/64 a duplicatâ ra-
tione 9/8.”44 Notice the collocation “duplicatâ ratione”: doubling a ratio is squaring
its fraction. The traditional Latin term “ditonus” for the major third makes a clear
statement about interval size. Possibly, Beeckman had in�uenced Descartes’s inter-
val calculations in 1618, which resulted in the circular diagrams, but Descartes could
have also learned these basic facts about musical intervals from studying Zarlino at
La Flèche in the years before his friendship with Beeckman.

This implies that no table of logarithms is needed to �nd the angles in the circular
diagrams as they are given in the printed versions of the Musicæ Compendium and
its extant manuscripts. However, in order to create a “circular musical slide rule”
with astronomical precision, Bürgi’s Progreß-Tabulen (see below) would be helpful.

Interlude: A Rosicrucian Link?

In 1620, Descartes visited the famous mathematician Johann Faulhaber (1580–1635)
in order to study with him. Faulhaber, the founder of a mathematical school in Ulm
(1600), was also interested in alchemy and in the Rosicrucian Society: “On 21 January
1618 he wrote to Rudolph von Bünau: ‘. . . I am not sparing any e�orts in inquiring
about the commendable Rosicrucian Society.’”45

Apparently, in 1619, Descartes planned to write a book provisionally titled The
Thesaurus of Polybius Cosmopolitanus and to dedicate it to the Rosicrucians. Accord-
ing to an extant copy of its summary, which is similar in content to Rule 4 of the
Regulæ ad directionem ingenii, its intention was to create a new science that would
merge algebra with geometry.46 At that time Descartes was already fascinated by
the compasses, later described in La Géometrie (1637, see �gure 8 above).47

Seemingly, Descartes had also tried to �nd out about the Rosicrucian Society
without success48 and in this he was in good company with Robert Fludd. Gary
L. Stewart claims that not only Faulhaber but also Descartes and Beeckman were
members of the secret order of the Rosicrucians, however he conceals that no hard
facts such as membership cards or lists have survived.49

44 Ibid., 1:88–89 (fol. 40r, 6 February–23 December 1616); at the same time he also quotes Faber Stapu-
lensis (ibid., 1:84 [fol. 38v, March 1615–6 February 1616]).

45 Paul A. Kirchvogel, “Faulhaber, Johann,” in Complete Dictionary of Scienti�c Biography, accessed
18 September 2015, http://www.encyclopedia.com/doc/1G2-2830901390.html.

46 Descartes, Musicæ Compendium, 371–78.
47 Gaukroger, Descartes: An Intellectual Biography, 99–103.
48 In 1624 Nicolaes Wassenar claimed in Historich Verhal, that Descartes was a Rosicrucian; cf. Gary

L. Stewart, “Determining Rosicrucian A�liation: René Des-Cartes (1596–1650),” in Rosicrucian Li-
brary, accessed 18 September 2015, http://www.crcsite.org/a�liation.htm.

49 Ibid.
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Kepler as well as Mersenne and Gassendi fought against Robert Fludd’s Neopla-
tonism. Descartes, however, remained silent about this issue. We wonder whether
he had seen the �rst parts of Robert Fludd’s Utriusque cosmi historia (published in
1617 and in spring 1618) during his stay at Breda so that he could have got his in-
spiration from the circular diagrams in the Templum Musicæ. It is certain, however,
that he knew Ramon Llull’s diagrams.50

Jost Bürgi’s Calculations

The calculations given above to estimate the angles of the musical intervals in
Descartes’s circular diagrams were carried out with super-particular ratios: The idea
was to express greater intervals, for example the octave (2 : 1), as powers of super-
particular ratios from smaller intervals. There is no exact representation in the form
(n+1/n)k = 2 with integer values k and n > 1, since n and n+1 are relatively prime
numbers. From the equality 2 = (81/80)55.798... the angle 360°/55.798 of the syntonic
comma in Descartes’s circular diagrams is obtained. How can the power index be
determined with elementary methods?

Jost Bürgi’s Progreß-Tabulen originate in a similar problem. Bürgi used the num-
ber 1.0001 as a base and made a �ne-grained table of powers, covering the range
of values from 1 to 10. Thereby, he found that 10 = 1.000123027.0022. Because the
values are given in �nite precision, the practical question for Bürgi was, how to cal-
culate them e�ciently by hand, so that the results are correct to the number of digits
required.51 In the following section we give a hint of how Bürgi might have created
his excellent tables. The basic idea is then used to show how Descartes’s angles can
be determined quickly in an elementary way.

The “black values” in Bürgi’s table are 9-digit values of the integer powers
1.0001n. They form a geometric sequence with 23,027 values between 1 and 10.
The “red values” are the corresponding power indices n running from 1 to 23, 027.
Although the graph of this geometrical sequence is concave-up, the �rst 100 values
of 1.0001n rounded to 4 decimal places form an arithmetic sequence with the com-
mon di�erence d = 0.0001 (see �gure 10a). As can be seen in the �rst �ve lines of
�gure 10a the decimal representations contain the binomial coe�cients of Pascal’s
triangle52 (see �gure 10b) �lled up with zeroes. It is probable that Bürgi used bino-
mial coe�cients to calculate some well distributed values of the 23,027 entries of
his table very accurately and then used interpolation between them.

50 Sasaki, Descartes’s Mathematical Thought, 105–8.
51 Jörg Waldvogel has shown that Bürgi’s table contains no systematic mistakes; see Waldvogel, “Jost

Bürgi and the Discovery of the Logarithms,” 104–15.
52 Blaise Pascal (1623–1662). The triangular table that incorrectly has Pascal’s name was known by

Nicolo Tartaglia (1523), Girolamo Cardano (1539), and Michael Stifel (1554) and can be traced back
to Greek antiquity; cf. A. W. F. Edwards, “The Arithmetical Triangle,” in Combinatorics: Ancient &
Modern, ed. John J. Watkins and Robin Wilson (New York: Oxford University Press, 2013), 166–80.
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1.00010 = 1 = 1.0000
1.00011 = 1.0001 = 1.0001
1.00012 = 1.00020001 = 1.0002
1.00013 = 1.000300030001 = 1.0003
1.00014 = 1.0004000600040001 = 1.0004
. . .
1.0001100 = 1.01004966... = 1.0100
1.0001101 = 1.01015067... = 1.0102

Fig. 10a. Some values from Bürgi’s geometric progression. The second equality sign in each row
means “is equal to . . . when rounded to 4 decimal places.”

Fig. 10b. Pascal’s Triangle according to Michael Stifel (Christo� Rudol� and Michael Stifel, Die Coss
Christo�s Rudol�s: Mit schönen Exempeln der Coss . . . [Königsperg i. Pr.: Alexander Berm, 1553], 45).
The German text on the right gives the then usual designations for powers of the unknown: “Coss”

from cosa (it.) = x, e.g., Sursolit indicates the �fth power of x.

How Bürgi Would Have Calculated Descartes’s Angles

If Bürgi had needed to calculate the angles for Descartes’s circular diagrams, he
could have created a new table with the base b = 1.0125 = 81/80, black values
running from 1 to 2 and corresponding red values from 0 to 55.798. However, more
likely he would have used his own Progreß-Tabulen in order to determine Descartes’s
angles.

To illustrate this, an estimation of the angle for the major third (5 : 4) is deter-
mined by using Bürgi’s diagram (see �gure 11). The digits of the ratio 5/4 = 1.250
are found between the black numbers 122139055 and 128400937 corresponding to
the red numbers 20,000 and 25,000. So the arithmetic mean red 22,500 corresponds
well with the major third. The best black number for the octave 2 = 2.000 is black
201368223 corresponding to red 70,000. The ratio between the two red values gives
the ratio between the angle of the major third and the angle of the octave resulting
in the angle 22500/70000 · 360° = 115.7° for the major third (correct 115.9°).
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Fig. 11. From the ratio 22.5 : 70 of the (red) numbers the angle of the major third ratio 5 : 4 results
in 115.7°. The angle in Beeckman’s copy of Descartes’s diagram is equal to 120° corresponding to

a twelve-tempered major third.

Octagesimal and Heptadecimal Number Systems

The more digits a number system has, the fewer calculations are needed to �nd
accurate values of powers. Therefore, in the Babylonian number system with base
60 iterative tasks such as extracting square roots can be done with fewer steps than
in the decimal number system. In the following, some of the above calculations for
Descartes’s circular diagrams are repeated by using base 80 and base 17 number
systems and Pascal’s triangle.

We apply an ad hoc notational convention to describe “octagesimal fractions.”
The “octagesimal digits,” the numbers between 0 and 79 are given in decimal no-
tation. Octagesimal digits are separated by colons, a double colon separates the in-
tegral from the fractional part of an octagesimal fraction. For example, 1 :: 25 : 3
stands for 1 + 25/80 + 3/6400 and the syntonic comma is represented by 1 :: 1 be-
cause of 1 + 1/80 = 81/80.

In order to calculate the size of nine syntonic commas by using the octages-
imal numbers we use the ninth row 1, 9, 36, 84, . . . of Pascal’s triangle to obtain
(81/80)9 ≈ 1 :: 9 : 36 : 84 = 1 :: 9 : 37 : 4 ≈ 1 :: 9 : 37 = 1 + 9/80 +
37/6400 = 6400+9·80+37

6400 = 7157
6400 = 1.11828. This value is between the whole

tones 10/9 = 1.11111 and 9/8 = 1.125, and very close to two Galilean semitones
(18/17)2 = 324

289 = 1.12111.
Likewise, in order to estimate the size of ten syntonic commas the tenth row in

Pascal’s triangle 1, 10, 45, 121, . . . gives (81/80)10 = 1 :: 10 : 45 : 121 : . . . > 1 ::
10 : 46 = 1 + 10/80 + 46/6400 = 6400+10·80+46

6400 = 7246
6400 ≈ 1.132 > 1.125 = 9/8.



i
i

i
i

i
i

i
i

20 Daniel Muzzulini

Therefore, the ratio of ten syntonic commas is between 9 : 8 = 1.125 and 8 : 7 =
1.143.

Similarly, by using the heptadecimal number system (base 17) and row 12 of Pas-
cal’s triangle we can quickly check Vincenzo Galilei’s approximation of the octave
by twelve semitones sized 18 : 17: (18/17)12 ≈ 1 :: 12 : 66 : 220 ≈ 1 :: 12 :
66 + 13 = 1 :: 12 : 79 = 1 :: 16 : 11 = 1 + 16/17 + 11/289 = 572

289 ≈ 1, 980.
Therefore, the octave measures approximately 9 · 6 = 54 syntonic commas and

certainly less than sixty syntonic commas. Alternatively, row 56 of Pascal’s triangle
gives (81/80)56 > 1 :: 56 : 1540 : 27720 : 36729 ≈ 2.003 showing that the octave is
a little bit smaller than �fty-six syntonic commas.

Musical Power Tables Derived from the Tetraktys

In music theory, logarithmic thinking is standard since Pythagoras’s time.53 The
tetraktys is usually depicted in triangular form as shown in �gure 12a. The pattern
can be interpreted as the number 10 given as a triangular number 10 = 1 + 2 +
3 + 4. The number pairs from the constituents 1, 2, 3, and 4 are the Pythagorean
consonances. The smallest of these intervals, the ratio 4 : 3, the sesquitertia, the
fourth, is used to subdivide the octave into two fourths separated by a major tone
resulting in the continuous proportion 6 : 8 : 9 : 12, a proportion sometimes called
tetraktys of the second kind (see �gure 12b). The ratio 9 : 8 of the middle terms,
a major tone, is not among the Pythagorean consonances, but one of the primary
melodic intervals.

In the next step of the derivation, the fourths (8 : 6 and 12 : 9) are divided
into two whole steps and a half step 256 : 243. Eventually, the Pythagorean dia-
tonic scale consists of �ve whole steps 9 : 8 and two half steps 256 : 243. The
Pythagorean chromatic genus and an early logarithmic representation of a double
octave (Bisdiapason) by Faber Stapulensis is shown in �gure 12d.54

The intervals of the Pythagorean tone system can be expressed as products of
integer powers of the form 2k · 3m. It is therefore straightforward to visualize the
Pythagorean ratios as a part of a triangle as in the �gures 12c and 13a. The dia-
gram 12c is also given by Kepler,55 who could have picked it from Fludd’s Templum
Musicæ (1618).

53 Kepler gives a concise summary of Pythagorean music theory: Kepler, Gesammelte Werke,
6:95–101.

54 Faber Stapulensis is quoted by Beeckman as early as 1616 (Waard, Journal tenu par Isaac Beeckman,
1:84 [fol. 38v, March 1615–6 February 1616]). In 1630, in a letter to Marin Mersenne, Descartes
judged Beeckman’s knowledge of music theory as very poor by claiming that Beeckman never
surpassed what he had learnt from Faber Stapulensis; cf. Buzon, “Science de la nature et théorie
musicale chez Isaac Beeckman,” 99.

55 Kepler, Gesammelte Werke, 3:94–95.
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1
1 1

1 1 1
1 1 1 1

Fig. 12a. The Pythagorean tetraktys as a
triangular number: 1 + 2 + 3 + 4 = 10.

Fig. 12b. Division of the octave 6 : 8 : 9 : 12
according to Zarlino, Dimostrationi harmoniche,
112. A detail of the School of Athens (1509–11) by

Raphael displays the diagrams of �gures 12a
and 12b.

1
2 3

4 6 9
8 12 18 27

Fig. 12c. Power table 2k · 3m for positive
integers k and m.

Fig. 12d. Division of the double octave
(2 : 3 : 4 : 6 : 8) and the Pythagorean chromatic

genus by Stapulensis, Musica libris quatuor
demonstrata, fol. 32v.

These triangular diagrams were used to illustrate the combinations of binary and
ternary durations in the ars nova/ars subtilior period, and they were rather popu-
lar from the late fourteenth into the sixteenth century in British sources.56 Robert
Fludd, in TemplumMusicæ, has not only copied the diagram from Johannes Torkesey
Declaratio et Scuti but also copied from its text.57

The same kind of diagram is already used in a copy of Boethius’s Arithmetic
of the tenth century, where the underlying number pairs 2/3, 3/4, and 4/5 are in a
super-particular ratio (see �gure 13b). The numbers in the columns form geometrical
sequences with the common ratios 3/2, 4/3, and 5/4.

56 Gilbert Reaney and André Gilles, eds., Breviarum Regulare Musicæ: MS. Oxford, Bodley 842 (Willel-
mus) (Rome: American Institute of Musicology, 1966), 9; Laurie Koehler, Pythagoreisch-platonische
Proportionen in Werken der ars nova und ars subtilior (Kassel: Bärenreiter, 1990), 1:46–51, 2:1–3.

57 Reaney and Gilles, Breviarum Regulare Musicæ, 57.
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Fig. 13a. Robert Fludd’s triangle (Fludd, Utriusque
cosmi, vol. 1, tract. 2, part 2, lib. 4, De Temporibus

Musicis, 204).

Fig. 13b. Arithmetic triangles by Boethius,
Institutio Arithmetica (Medeltidhandskrift 1

[Mh 1], Lund University Library, fol. 4v) for 3/4
and for 4/5.

In Fludd’s diagram (�gure 13a), the numbers on parallel lines through grid points
form geometric progressions with the common ratios 2, 3, 3/2, and 4/3. The labels
added to the triangle make clear that Fludd is aware of this fact. He indicates clearly
the directions of the Duplares (2 : 1), Triplares (3 : 1), Sesquialteræ (3 : 2) and
Sesquitertiæ (4 : 3).

Syntonic Tone System and Higher Dimensional Grids

Similar grids can be created for any pair of relatively prime numbers. Musically
meaningful in Western music theory are the primes 3 and 5 to represent the �fth and
the major third of the syntonic tuning system. Such grids were studied by Rameau
(1726) and Euler (1739) in order to describe the ratios between the pitch classes of
syntonic tuning systems in geometrical terms. In order to create syntonic scales
within an octave the powers 3x · 5y are reduced into values between 1 and 2 by
adding or subtracting one or several octaves, that is, by multiplying these numbers
by suitable powers of 2. In other words, numbers of the form 2x · 3y · 5z are studied,
resulting in a three-dimensional grid of numbers.58

58 For details see Guerino Mazzola, Geometrie der Töne: Elemente der mathematischen Musiktheorie
(Basel: Birkhäuser, 1990), 63–84. Descartes was aware of the fundamental role of the �rst three
prime numbers for constructing tone systems and called them “numeros sonoros” (Descartes, Mu-
sicæ Compendium, 105).
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Rameau’s grid (see �gure 14) is obtained by neglecting the octave information x.
In this grid of pitch classes the consonant major and minor triads form right-angled
triangles with legs of unit length.

Fig. 14. Syntonic grid of pitch classes by Rameau (Jean Philippe Rameau, Nouveau système de
musique [Paris: Ballard, 1726], 24) combining powers of 3 (�fths) vertically and powers of 5 (major

thirds) horizontally.

By admitting higher prime numbers in the same way higher dimensional structures
are obtained. Therefore, some authors, such as Christiaan Huygens in the seven-
teenth and Martin Vogel in the twentieth century,59 have suggested an additional
musical dimension for powers of 7. Kepler, in possession of Gauss’s result, however,
would have taken 17 instead of 7.

Conclusions

Two ways of representing frequency ratios used in the early seventeenth century
have been at the center of this essay. The common property of the related diagrams is
the use of spatial distance for measuring musical intervals. Whereas the two dimen-
sional “Cartesian representation” used by Robert Fludd within a discrete straight

59 Martin Vogel, Die Lehre von den Tonbeziehungen (Bonn: Orpheus, 1975).
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line coordinate system can be traced back to Boethius, Descartes’s circular diagrams
do not have early forerunners, but there are apparent similarities to one of Robert
Fludd’s musical diagrams and to a mathematical diagram by Jost Bürgi. The latter
was printed two years after Descartes composed his Musicæ Compendium, whereas
the former had already occurred in print eight months earlier.

It has been highlighted that thinking in musical intervals and scales is genuinely
logarithmic and predates the invention of logarithms as calculation techniques by
the end of the sixteenth century in Scotland and Switzerland by John Napier and Jost
Bürgi. The equivalency of adding musical intervals and multiplying their frequency
ratios is a music theoretical truism, which is manifest in the traditional Latin terms
ditonus, tritonus, bisdiapason, etc. In traditional music theory and arithmetic, the
standard operation on ratios is multiplication and not addition. This is the state
of the art already in Boethius’s reception of Greek music theory and arithmetic as
handed down through the Middle Ages.

The most remarkable element of Descartes diagrams is not the logarithmic repre-
sentation of musical interval size per se, but its combination with a circular topology
capturing the octave similarity as a perceptual phenomenon. These diagrams visu-
alize pitch classes as locations on the circle line and intervals as central angles of
circular sectors. In one of the diagrams (�gures 3a and 3b) it is shown that the set of
consonances described by Zarlino’s senario is closed under octave addition as well
as under octave complements. The diagram with the hexachords (�gure 3d) equates
transposition of scales with rotation about the center of the circle. It is suited to
show the potential in�nity60 of the syntonic diatonic tone system.

It remains unclear whether Descartes knew Fludd’s circular diagrams when he
composed the Musicæ Compendium. Basic knowledge of music theory and mathe-
matics and a glance at Ramon Llull’s diagrams might have been all Descartes needed
in order to develop his manner of representing pitch and interval classes.

There are no early three dimensional visualizations of the syntonic tone system.
In the pitch grids of the eighteenth century by Rameau and Euler built from the same
principle as Boethius’s triangles, the octaves are reduced to points. These points
symbolize classes of pitches with an unspeci�ed octave. A “natural” geometrical
representation of the syntonic tone system taking account of the octave in both
directions, �fths and thirds, would be a torus, the combination of two Cartesian
pitch circles.61

60 In a sketch Isaac Newton generalizes the diagram to �ve concentric circles of diatonic scales;
Penelope Gouk, Music, Science, and Natural Magic in Seventeenth-Century England (New Haven,
CT: Yale University Press, 1999), 140; Wardhaugh, The “Compendium Musicæ” of René Descartes,
85–128.

61 Roger Shepard even proposes a four-dimensional pitch model (double helix on a helical cylinder):
Roger N. Shepard, “Pitch Perception and Measurement,” in Music, Cognition, and Computerized
Sound: An Introduction to Psychoacoustics, ed. Perry R. Cook (Cambridge, MA: MIT Press, 2001),
163.
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