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5 Musical Intervals, Scales, and Tunings: Auditory Repre sen ta tions 

and Neural Codes

Peter Cariani

Introduction

Much of the world’s  music is tonal  music— music that uses combinations and sequences of 
pitched sounds to produce its effects on listeners. This chapter describes basic properties of 
musical scales and tuning systems and examines their major characteristics in terms of the 
psychophysics of pitch, musical interval perception, consonance, tonal hierarchies, and 
auditory neural repre sen ta tions.

The first section surveys the structure of musical pitch space and tonal relations. The sec-
ond describes major features of common scales and tuning systems and takes up questions 
related to why scales and tuning systems take the forms that they do. The last examines what 
characteristics of pitch space and scale design might be explicable in terms of early auditory 
neural repre sen ta tions of pitch. The discussion moves from an introduction to musical pitch 
perception to descriptive musicology (or “ music theory”) to psychophysical and auditory 
neural models.

Tonal  music is  music whose focus is on patterns of pitch. Musical melodies involve tra-
jectories through subjective pitch spaces, whereas musical harmonies involve combinations 
of pitches, both concurrent and successive, within them. Musical intervals are the pitch 
frequency– ratio relations that determine the perceptual geometries of  those spaces. In a 
given musical system, scales determine the musical intervals available for use. Tuning systems 
fix the exact note- frequencies and/or their interval ratios associated with the notes of scales, 
 either by explic itly specifying them or by prescribing methods for tuning instruments that 
implicitly determine them.

Our goal is to address the question “Why  these notes and not  others?” ( Johnston, 2009)— 
why musical scales might be structured the way they are. Choices of the scales and tunings 
used in a given musical culture are  shaped by both culture and nature. Cultural constraints 
involve cultural histories and musical practices (which voices and instruments are used to 
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fulfill which musical, psychological ends), whereas natu ral, biological constraints involve 
auditory neural pro cesses that subserve pitch perception and cognition.

Cultural, social- psychological  factors can be approached through comparative musicolog-
ical and ethnomusicological studies of musical cultures (e.g., Nettl, 2015). Musical cultures 
differ in their social uses of  music, musical preferences, and available instruments. Although 
notable but isolated exceptions can be found (McDermott et al., 2016), near- universals exist 
among tonal systems in the world (Gill & Purves, 2009; Savage, Brown, Sakai, & Currie, 2015; 
Trehub, Becker, & Morley, 2015). Musical perceptions tend to be less dependent on culture 
than musical preferences. Perceptual universals that are shared by the vast majority of listen-
ers of all musical cultures include distinctions of musical pitch, octave equivalence, conso-
nance/dissonance, and ability to recognize transposed melodies. Some individual exceptions 
involve amusic listeners who cannot recognize melodies and listeners who direct attention to 
dif fer ent perceptual aspects of sounds (e.g.. pitch height vs. chroma, roughness vs. harmonic-
ity). This chapter focuses on the common aspects of musical scales and tuning systems and 
discusses their pos si ble origins in temporal neural codes and repre sen ta tions that subserve 
auditory perception.

A central and abiding question in the psy chol ogy of  music has involved the origins of 
integer frequency ratios that  were discovered by the Pythagoreans and  others (Rameau, 
1722/1971; Helmholtz, 1885/1954; Révész, 1954/2001; Boomsliter & Creel, 1961; Plomp et al., 
1965; Schellenberg & Trehub,1996; Burns, 1999; Lester, 1999; Tramo et al., 2001; Green & 
Butler, 2002; Thompson, 2013). Neural repre sen ta tions based on temporal codes in early 
stages of auditory pro cessing may explain some of  these basic features of musical tonality. In 
addressing the details of auditory repre sen ta tions, this discussion is meant to complement 
excellent existing introductory surveys and reviews (see Burns & Ward, 1982; Dowling & 
Harwood, 1986; Handel, 1989; Kendall & Carterette, 1996; Burns, 1999; Thompson, 2013).

Tonal  Music
In approaching musical scales and their design, it is helpful to first consider how and why 
 humans use  music. Listening to  music involves attending to temporal patterns of sonic 
events for the purpose of influencing internal  mental states in desired ways.  Music listening 
can be for plea sure, emotional engagement, cognitive interest, novelty, relaxation, arousal, 
movement (dance, exercise), beauty, or a host of other reasons, individual and social.  Music 
itself can be broadly defined as  those or ga nized sound patterns that can be used in such 
deliberate ways by a given person or group to achieve their desired psychological, experien-
tial ends. Scales and tuning systems are means to  these ends.

 Music is relational and purposive in that it is defined in terms of its intended psychologi-
cal use.  Music listening therefore contrasts with involuntary exposure to sounds that induce 
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undesired effects, such as annoyance, irritation, stress, discomfort, and pain. One individ-
ual’s  music is another’s unwanted “noise,” and even for a single individual, the very same 
sound patterns can be regarded as  music in some situations, when desires are fulfilled, and 
as annoying noise or even torture in other situations, when desires are blocked or negated.

Musical listening in its purest form is listening in the aesthetic mode— intentionally modi-
fying experience in a manner consistent with one’s current purposes and preferences. In con-
trast to speech, but like poetry, listening to instrumental  music evokes and provokes, rather 
than communicating explicit messages. Thus, “Using  music to order a pepperoni pizza for 
home delivery is unlikely to meet with success” ( Janata, 2004, p. 203). In contrast to ecologi-
cal modes of listening, whose primary purpose is to gather information about the external 
world for orientation and action,  music’s purpose is to modulate internal  mental states for 
individual and/or social ends.

 Music is conveyed through the medium of sound, such that its perception is mediated 
mainly by the auditory system. Each musical event evokes multiple auditory perceptual attri-
butes: loudness, duration, relative timing, pitch, timbre, and the spatial attributes of direction, 
distance, and apparent size. Some of  these attribute classes, such as pitch and timbre, have 
multiple dimensions. Most of  these are associated primarily with one set of related acoustic 
par ameters: pitch (dominant periodicity), loudness (intensity), and duration (duration). Tim-
bre is more complex, encompassing dif fer ent perceptual qualities that covary with spectral 
shape, onset characteristics, and fluctuations in amplitude, frequency, and phase.

Tonal  music is  music whose primary focus (its foreground) involves changes in pitch. In 
tonal  music, pitch sequences (melodies) or combinations (harmonies) are the most salient 
features that distinguish one musical piece from another. Much of the world’s  music, includ-
ing most genres of Western  music, is tonal in the sense that it is “pitch- centric”  music.Tonal 
 music can be contrasted with  music that focuses on rhythmic, timbral, or vocal patterns. In 
rhythm- centered  music, such as West African drumming, the main sonic changes of interest 
and expression involve rhythms— i.e., event timing patterns, rather than melodies or harmo-
nies. In timbre- centered  music, such as ambient, electroacoustic, and nonsensical Dadaist pho-
netic  music,1 the focus is on successions of changing timbral sound qualities. In vocal- centered 
or spoken  music, such as lexical  music, chant, and rap, recognizable words and their meanings 
are paramount, with tonality, rhythm, and timbre playing subsidiary, supporting roles.

A commonsense test of which aspects are most essential is to flatten one or more dimen-
sions by selectively eliminating changes in pitch, rhythm, timbre, or lyr ics and evaluating 
 whether a given piece of  music has retained its most impor tant essentials— i.e.,  whether it is 
still recognizable as the same piece or  whether it still retains musical interest.

Musical tonality encompasses  those aspects of  music that depend on pitch relations, both 
successive and simultaneous, between notes of a scale.2 In the conventional  music notation 
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of European- derived “Western” musical cultures (see 5.2b  later in this chapter), pitch is the 
vertical dimension, and time is the horizontal dimension. Tonality includes melody and 
harmony. Melody involves successions of pitches in time, whereas harmony involves pitch 
relations between concurrent or sequential notes. Melodies involve patterns of movements 
within pitch space, whereas harmonies characterize the relational structure of that space.

Musical Pitch
The umbrella term musical pitch has several meanings. Musical pitches are pitches used in 
 music, for musical purposes, and/or played by musical instruments. In other contexts, musi-
cal pitches are  those types of pitches whose properties support chroma relations that enable 
recognition of musical intervals, melodies, and harmonies. A musical note is a par tic u lar audi-
tory event that produces a clear pitch percept in listeners (e.g., the last note A Day in the Life 
by the Beatles), but it can also refer to a par tic u lar pitch class (e.g., the note C3).

Most pitched- notes in  music are produced by  human voices and musical instruments that 
are designed to produce clear pitches. In acoustical terms,  these pitches are almost invari-
ably produced by harmonic complex tones with periodic waveforms (for introductions, see 
Plack & Oxenham, 2005; McDermott & Oxenham, 2008; de Cheveigne, 2010; Moore, 2013; 
Oxenham, this volume). Although rare in  music and nature, pure tones also produce strong 
pitches that can convey melodies and harmonies just as effectively. For both pure and com-
plex tones, the pitches that are heard correspond very closely to the repetition rates of  these 
periodic waveforms. If the waveform is complex, then this repetition rate is the fundamen-
tal frequency (F0), whereas if it is a pure tone, individual harmonic, or frequency component 
that consists of a single sinusoid, this repetition rate is its frequency (f ), and f = F0.

An extensive lit er a ture exists on the physics and acoustics of musical instruments (Benade, 
1990; Rossing, Wheeler, & Moore, 2002; Forster, 2010; Hartmann, 2013; Heller, 2013). Most 
musical instruments that produce strong, clear pitches involve vibrating strings (e.g., pianos, 
violins, guitars), air columns (e.g., organs, woodwinds, brass), flexible structures (reeds), and 
membranes (voices) that produce harmonic complex tones. Less periodic sounds, such as 
inharmonic complex tones, are produced by bells,  kettle drums, metallophones, and litho-
phones. Inharmonic tones and vari ous kinds of noise stimuli produce weaker pitches with 
lower pitch saliences, and although such sounds are only very rarely used in musical con-
texts, some are nevertheless capable of carry ing recognizable melodies and harmonies.

Terminology of Pitch Types
To be clear, note- pitches  will refer to the pitches that are perceived, whereas note- frequencies 
 will refer to the repetition rates of sounds. Pitch is thus a subjective, perceptual qual-
ity, whereas repetition rate, frequency, and fundamental frequency are intersubjectively 
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mea sur able physical- acoustical properties. In operational, experimental psy chol ogy terms, 
being a subjective quality, note- pitch is mea sured in terms of an overt pitch judgment— the 
physical frequency (F0, f ) of a reference tone— that a listener has chosen as the best pitch 
match to a given note. The reference tone is usually a pure tone presented at a specified 
sound level.

The terminology concerning musical pitch and pitch space can be complicated and con-
fusing  because  there are several vantage points from which pitches can be regarded and clas-
sified. Many labels, such as spectral pitch, virtual pitch, periodicity pitch, and residue pitch, make 
implicit theoretical assumptions about the nature of the neural repre sen ta tions and mecha-
nisms that are thought to produce them. When trying to make sense of the extensive and 
diverse lit er a ture on pitch, it is helpful to keep in mind  these many alternative perspectives:

1. Production/use: Which sound sources evoke which pitches (e.g., musical instrument pitches, 
piano- pitches,  human voice pitches, musical pitches that are produced for tonal  music),

2. Acoustics: Which types or aspects of sounds produce them (pitches of pure vs. complex 
tones, f- pitches matched to individual frequency components vs. F0- pitches matched to 
fundamentals of groups of harmonics),

3. Auditory perception: Perceptual functions they enable (e.g., musical pitches or chroma- pitches 
that support perception of chroma relations, such as recognition of intervals and trans-
posed melodies),

4. Presumptive auditory repre sen ta tion: Which auditory repre sen ta tions might subserve par tic-
u lar pitch percepts (e.g., spectral vs. periodicity pitch),

5. Presumptive neural substrate: Which neural codes and mechanisms produce par tic u lar pitch 
percepts (cochlear place pitch vs. interspike interval pitch), and

6. Music- theoretic pitch class (chroma- equivalence class): The music- theoretic function of a 
par tic u lar pitch in a musical context.

Basic Pitch Attributes
Many basic aspects of scales reflect the organ ization of under lying perceptual qualities associ-
ated with pitch, i.e., the basic, dimensional geometry of pitch space. Musical pitch has four 
basic attributes: pitch height, pitch chroma, pitch strength/salience, and vibrato.

By far the most impor tant attributes for tonal  music are pitch chroma and relative height 
 because  these attributes form the basis for melody and harmony. The vast majority of listeners 
perceive pitch height and chroma in relative rather than absolute terms. They can evaluate 
 whether one pitch is higher or lower than another (relative pitch height),  whether one pitch is 
stronger than another (pitch strength or salience), and  whether two pitches bear some distinc-
tive similarity or relation (e.g., an octave apart) to each other (relative pitch chroma, musical 
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interval discrimination/recognition). Pitch salience (Zwicker & Fastl, 1999) can be regarded as 
an auditory analogue of color saturation in vision, but few musical genres make use of varia-
tions in this attribute.

Vibrato, or lack thereof, involves qualities related to the constancy of sound periodicity. 
Slow oscillations in periodicity create qualities of wobbling, wavering, fluctuating, or flutter-
ing pitch that can vary in frequency extent (usually fractions of a semitone, 0.5–3  percent 
of F0) and rate of oscillation (usually 5–8 Hz or less) (Sundberg, 1994; Vurma & Ross, 2006). 
Vibrato is found in the vocal and instrumental  music of many musical cultures worldwide 
and is used mainly for emotional expression and ornamentation.

Musical note- pitches are highly stable. Musical pitch is highly invariant with re spect to 
acoustic par ameters that dramatically alter other perceptual attributes, such as loudness, 
duration, timbre, and sound direction. Timbral alterations created by changes in gross spec-
tral shape, spectral tilt, attack/decay, and frequency- onset characteristics have  little effect on 
musical pitch.  Because of  these strong perceptual invariants, dif fer ent musical instruments 
and voices can reliably play the same pitches, and scales and practical tuning systems can 
be constructed that are largely in de pen dent of  these par ameters. The small deviations from 
 these invariances, such as pitch shifts with sound level, are always much smaller for the 
harmonic complexes of musical instruments than for pure tones. Fortunately  these shifts 
are not large enough to make a practical difference for the vast majority of musical tuning 
procedures (Dowling & Harwood, 1986, pp. 50–51).

Lastly, several dif fer ent pitches can coexist together in the auditory scene.  These are mul-
tiple pitches that can be heard in single notes and groups of notes (chords). Although the 
strongest pitch of a single musical note usually lies at its fundamental frequency, multiple 
weaker pitches related to individual harmonics above the fundamental can be heard out, pro-
vided that  these harmonics are separated by at least 20  percent in frequency (de Cheveigné, 
2010; Plomp, 1976). As harmonic number increases and harmonic spacing in logarithmic 
terms consequently decreases, pitch saliences of individual harmonics successively weaken 
 until harmonics above the 5th can no longer be or aurally resolved, i.e. they can no longer 
be “heard out” as separate pitches (Plomp, 1976).3

When multiple notes are sounded together in chords, several pitches can also potentially 
be heard (Parncutt, 1989). Some of  these pitches correspond to the fundamentals of the 
individual notes, whereas  others can be heard that correspond to the common fundamen-
tal frequency of all of the notes. Figure 5.10c  later in this chapter shows model predictions 
of vari ous pitches that can be heard in a major triad.  Because the fundamental frequency 
of the chord is the highest common subharmonic of the note- F0s, and each note- F0 is the 
highest common subharmonic of the harmonics of each note, the fundamental frequency 
of the note- F0s is also the fundamental frequency of all of the harmonics of the notes. This 
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“ grand fundamental” of the notes is also known as the fundamental bass of the chord. This 
is Rameau’s basse fundamentale, which has played an impor tant role in the development of 
theories of harmony (Rameau, 1772/1971; Riemann, 1905/2011; Terhardt, 1974, 1984). The 
stronger this fundamental bass, the more unified the pitch, and the more stable the chord 
in terms of pos si ble competing pitches. Neural models for harmony that are based on such 
mutually reinforcing subharmonic patterns are discussed in the last section of this chapter.

Pitch Space
Musical tonality depends on pitch relations, whose structure can be considered in terms of 
the geometry of pitch space. Two- factor models of pitch space represent pitch height as a 
linear dimension (figure 5.1a) and chroma as a circular dimension (figure 5.1b, top), with 
the rising pitches of musical scales represented as a helix (figure 5.1b– d) in a cylindrical 
space (Bachem, 1950; Burns & Ward, 1982; Deutsch, 1999; Drobisch, 1852; Révész, 1954/2001; 
Shepard, 1964, 1982a, 1982b; Ueda & Ohgushi, 1987; Ward, 1999). Some depictions, such 
as the “tonal bell” of Ruckmick (1929) (figure 5.1c) and the oto- no- horin of Yatabe (1962) 
(figure 5.1d), use the radius of the helix to denote the strength of chroma- related qualities 
(chroma salience) and the frequency range over which they exist. This existence range extends 
roughly from just below C1 (33 Hz) to just above above C8 (~4.2 kHz). More elaborate geomet-
ric forms, such as multiple helices embedded in toruses (see figure 4.8), have been conceived 
to attempt to capture the neighborhood perceptual distance relations between other note 
and key relations within the octave (Shepard, 1982a, 1982b; Krumhansl, 1990).

Musical scales universally or ga nize notes sequentially according to pitch height, from low 
to high, but they also incorporate the circular dimension of pitch chroma, repeating their 
organ ization with each successive octave.

Musical intervals are distinctive chroma relations. Notes an octave apart share the same 
chroma class and are perceived as similar. Pairs of notes separated by other frequency- ratios 
constitute other characteristic chroma relations. Intervallic structure, the pitch chroma rela-
tions of successive notes to the tonic, is the most impor tant determinant of the essential 
form of a melody: it is what distinguishes a par tic u lar melody from  others and that makes it 
recognizable and memorable.

For most listeners, pitch chroma distinctions can be clearly discerned only for periodici-
ties (f, F0) roughly between 25 Hz and 5 kHz. Above C8, at 4.2 kHz, pitch chroma distinctions, 
such as octave similarity and recognition of other intervals, are severely degraded and tend 
to dis appear altogether (figure 5.1c and 5.1d). Notably, some individuals have higher upper 
limits of chroma perception (Burns, 1999).4 The disappearance of pitch chroma at high fre-
quencies leaves only crude pitch height distinctions. The resulting chroma- less patterns of 
the rising versus falling pitch transitions of melodies are called pitch contours.
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Figure 5.1
Four low- dimensional geometrical depictions of pitch space. (a) A linear map of pitch height in two 
 middle octave registers from C3 to C5. (b) Top. Circular dimension of pitch chroma, which proj ects 
similar pitches within each octave into the same class. Bottom. Helical, “two- component” repre sen ta tion 
of pitch (Révész, 1954), with the vertical dimension representing pitch height and the  angle around the 
vertical axis representing pitch chroma ( after Drobisch, 1852, reprinted in Butler, 1992). (c) The tonal bell 
of Ruckmick (1929). The structure is an attempt to incorporate the attribute of “volume” or “breadth” 
(see also Boring, 1942, pp. 375–381) and the existence region of tonality in one structure. (d) A thinning 
helix repre sen ta tion that indicates the diminishing dimension of chroma at higher frequencies (redrawn 
from Yatabe, 1982, as reprinted in Ueda & Ohgushi, 1987). Corresponding note frequencies are shown 
for the C chroma class. Note that Ruckmick’s C0 is our pres ent-day C1 (33 Hz). See also pitch helices in 
figures 4.1 and 11.1.
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The frequency limits of musical tonality thus determine the ranges of pitches that can be 
used for tonal musical purposes—that is, to produce recognizable musical melodies and harmo-
nies.  These limits explain why musical scales do not cover the entire frequency range of hearing 
(~20 Hz–20 kHz). The F0- frequency range of notes on the piano, 27 Hz–4.2 kHz, is also approxi-
mately coextensive with the frequency range for musical tonality (figure 5.2) for essentially the 
same reason: it spans the range of usable musical pitches that can support chroma relations.

Despite preservation of their pitch contours, melodies transposed into octaves above 4–5 kHz 
are perceived to be highly distorted or even completely unrecognizable—”transposition 
be hav ior becomes erratic” (Atteneave & Olson, 1971, p. 147). They go on to say:

Perhaps the most provocative finding of  these studies is the abrupt deterioration of musical transposi-
tion that occurred at about 5,000 Hz, both in the musical subjects of Experiment I and in the non-
musical subjects of Experiment II. Something changes rather dramatically at this level; phenomenally 
it is identifiable as a loss of musical quality, what ever that may be. (p. 163)

What dis appear above 5  kHz are chroma relations, the substrates for octave similarity, 
musical intervallic relations, and melodic structure. Chroma relations thus appear to be criti-
cal for robust melody recognition, with patterns of pitch contours playing much weaker roles.

The existence region for musical tonality has potentially strong implications for the 
nature of the neural codes and repre sen ta tions that subserve musical pitch, i.e.,  those types 
of pitched sounds that can support chroma relations (see Burns, 1999; Atteneave & Olson, 
1971). Types of sounds that produce relatively strong musical pitches are low- frequency pure 
tones (50 Hz < f < ~4.5 kHz) and harmonic complexes (~25 Hz < F0 < ~1.2 kHz) consisting of 
perceptually resolved harmonics (typically three or more low harmonics, n ≤ 5, with wide 
harmonic separations, Δ f > 20%). Weaker musical pitches can be produced by sets of percep-
tually unresolved harmonics (higher harmonics, n > 5, with narrow harmonic separations 
Δ f < 20%), band- pass noise, pattern- repetition- noise (e.g., iterated  ripple noise, maximum 
length sequences), and amplitude- modulated noise. Nevertheless, all of  these stimuli support 
pitch chroma relations; that is, they support octave matching and they can carry a recogniz-
able melody. The upper frequency limit of such musical pitches coincides with the limit of 
statistically significant spike timing (“phase- locking”) in the auditory nerve ( Johnson, 1978), 
suggesting that chroma- relations might be based on temporal repre sen ta tions (see neural 
coding discussion below and figure 5.7  later in this chapter).

Listeners are able to distinguish major from minor pure tone triads up to a mean frequency 
of roughly 3 kHz and down to a mean frequency of just above 100 Hz (Biasutti, 1995). On the 
low- frequency end of the tonality existence region, clear F0 pitches and their chroma relations 
for harmonic complexes dis appear around F0 = 20–25 Hz (Pressnitzer, Patterson, & Krumbholz, 
2001; de Cheveigne, 2010). Below this lower limit, stimuli with dominant periodicities in the 
10–20 Hz register are perceived as infra- pitch (Warren & Bashford, 1981; Warren, 1999) and 
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Figure 5.2
Frequency range of musical pitch. (a) Existence region for musical tonality (octave matching, recognition 
of transposed melodies) and approximate F0- pitch ranges for selected musical instruments. (b) Mapping 
of the F0- pitch range for an eighty- eight- key piano onto Western  music notation. (c) Piano keyboard and 
corresponding numerical frequency values for F0- pitches, in Hz. The piano keyboard corresponds to the 
chromatic scale (twelve notes per octave), typically using equal temperament tuning ( table 5.1), with 
adjacent notes a semitone (~6%) apart. Note that the repeating pattern of piano keys mirrors the repeat-
ing octave- based pattern of pitch chroma sequences and scales.
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have qualities such as “motor- boating.” For repetition rates of less than ~10–12 Hz, individ-
ual auditory events can be distinguished, and the repeating temporal patterns are perceived 
as rhythmic patterns of events rather than infra- pitches or pitches.

Consonance, broadly construed, describes perceptual qualities and their aesthetic- hedonic 
preferences that are related to sequential or concurrent combinations of pitched- notes. The 
perceptual qualities can be grouped into  those related to roughness and  those related to har-
monicity. Roughness (also known as sensory dissonance) is produced by the beating of nearby 
harmonics, whereas qualities related to harmonicity (pitch multiplicity, stability, and unity) 
involve the degrees to which neural repre sen ta tions associated with multiple pitches  either 
mutually reinforce or compete with each other (see discussion of harmonicity in chapter 1). 
Arguably, aspects of consonance related to harmonicity are closely related to harmony, and 
therefore influence choices of sets of notes in tonal systems (scales). Aspects related to rough-
ness are relatively more impor tant for tuning systems.

The first note of the scale, called its root or tonic, determines the tonal context or refer-
ence point for all other notes of the scale that follow. The note corresponding to each musi-
cal interval has a characteristic perceptual relationship to the tonic, such that dif fer ent 
musical intervals constitute dif fer ent perceptual distances to the tonic and to each other. 
In  music theory, each interval is said to have a unique tonal function; in  music psy chol ogy, 
each interval has a unique location in a tonal hierarchy (Krumhansl, 1990, 1991; Bigand, 
1993; Krumhansl, 2000; Krumhansl & Cuddy, 2008; Russo, this volume). Tonal hierarchies 
establish near- far neighborhood relations between notes, chords, and keys that depend on 
the current tonal context; that context is the tonal center (tonic) that has been established in 
auditory short- term pitch memory by preceding notes.

Most listeners can make only rather crude estimates of absolute note- pitches presented in 
isolation, on the order of identifying which octave register a pitch lies (five accurately identi-
fiable pitch regions [Pollack 1952]; average errors of judgment of “tone height” in the range of 
five to nine semitones [Bachem, 1950]). In contrast, the few listeners who have absolute pitch 
(AP) can reliably identify individual notes of chromatic scales (Levitin, this volume), that is, 
with semitone resolution and on the order of seventy- five separate absolute pitch categories 
(Burns, 1999). Some AP listeners can also make absolute pitch identifications finer than a 
semitone (e.g., how much a note is mistuned regarding its standard frequency). Most AP lis-
teners also have relative pitch, but in some cases strong reliance on AP can interfere with rela-
tive pitch, such that AP listeners may do much more poorly than their non- AP counter parts 
when melodic recognition requires transposition into unfamiliar tonal contexts (Miyazaki, 
1992; Miyazaki, 2004).

Pitch discrimination involves distinguishing pitches produced by two acoustic stimuli 
(musical notes) with dif fer ent fundamental frequencies (same vs. dif fer ent pitch). For musical 
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pitches, the finest, just- noticeable- distinctions (jnd’s) are roughly proportional to the F0s 
involved (Weber’s Law, ΔF0/F0 ~ constant), typically on the order of 1  percent or less in fre-
quency (~1/6th of a semitone).  Under ideal listening conditions and with some training, pitch 
acuity can be still an order of magnitude better than this. Thus, for most listeners, the ability 
to discriminate pitches is roughly two to three  orders of magnitudes finer than the ability to 
identify them in absolute terms. Even for AP listeners, pitch discrimination is still greater than 
an order of magnitude more sensitive than their ability to identify absolute pitches.

Most Musical Pitch Perception Is Relative, Involving Relations between Note Pitches
Listeners can make relative judgments regarding  whether a given pitch is higher or lower 
than another (relative pitch height). Frequency differences required for  these identifications 
are roughly comparable to  those for pitch discrimination, albeit with considerable (and some 
very counterintuitive) individual differences.5

Listeners can also make estimates of relative pitch distance, as, for example, what pitch is 
“half” or “twice” as high as another. The mel scale was developed by the psychophysicist S. S. 
Stevens to attempt to characterize subjective pitch height differences in terms of such mag-
nitude estimations (the vertical scale in figure 5.1c). Pitch space can be depicted in terms of 
a helix- cylinder with pitch height in mels and chroma as central  angles around the cylinder 
(Ward, 1999, reprinted in Ueda & Ohgushi, 1987). The existence range of musical tonality 
extends from 0 mels a few semitones below C1 (33 Hz) to roughly 2500 mels a few semitones 
above C8 (~5 kHz). For  middle registers the scale is roughly consistent with the proportional, 
log- frequency scaling of pitch chroma (Zwicker & Fastl, 1999), but outside of this range, espe-
cially for the lowest and highest registers, it deviates from them very substantially (Atteneave 
& Olson, 1971; Hartmann, 1993). The scale is generally viewed as unreliable and unmusical 
(Rasch & Plomp, 1999)  because it is not clear what auditory quality the listener is using to esti-
mate magnitude: dif fer ent listeners may focus on dif fer ent aspects of pitch such as pitch height 
versus chroma or, in neural terms, cochlear place versus temporal cues (Shepard, 1982b).

The vast majority of listeners have relative pitch. The term usually means that listeners can 
perceive relative pitch chroma relations, such that they can discriminate and recognize melo-
dies. Exceptions are  those with amusia— that is,  those who have poor pitch discrimination 
and cannot reliably distinguish or recognize melodies (Peretz, 2013, 2016; Quintin, Lense, 
& Tramo, this volume). Relative pitch is what enables listeners to easily recognize melodies 
irrespective of the keys in which they are played (i.e., which tonic or starting note is used). 
Melodies are said to be perceptually invariant with re spect to transposition. As long as all note- 
frequencies (F0s) are multiplied by a constant  factor, melodies remain highly recognizable as 
the same patterns of relative pitches. For example, the pitch pattern of the first seven notes of 
“Twinkle, twinkle  little star” in the key of C (notes CCGGAAG) sounds similar to its transposed 
version in the key of F (notes FFCCDDC). What is preserved are the frequency ratios between 
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the successive notes of the melody relative to the first note (1, 1, 1.5, 1.5, 1.68, 1.68, 1.5). In the 
transposition, although all frequencies have been multiplied by a constant ratio (1.335), all of 
the ratios in relation to the first note (the tonic) are preserved, as well as  those among all pairs 
of notes. The melody remains invariant, recognizable as the same melody, much as a triangle’s 
shape remains invariant provided that all of its lengths are multiplied by the same  factor.

Musical intervals, most broadly, are the frequency- ratios between pairs of notes (Partch, 
1974, pp. 76–85). More narrowly, in the contexts of scales and tonal  music, musical inter-
vals also have a more specific meaning as the frequency- ratios of notes to the tonic (i.e., to 
the first note of a scale or to the tonal center/reference of a melody— its key). Thus, trans-
position preserves both musical intervals (frequency ratios) and pitch contours (patterns of 
rising and falling pitches, i.e., directions of pitch height changes irrespective of their magni-
tudes). Of  these, preservation of musical intervals is by far the more impor tant for melodic 
recognition— even when contour is preserved, distortion of intervals by more than a semi-
tone rapidly degrades melodic similarity and recognition.

Contour and intervallic expectations appear to be mediated by separate  mental pro cesses 
(Graves, Micheyl, & Oxenham, 2014). Contour depends on changes in pitch direction, whereas 
intervallic relations depend on pitch ratios, especially ratio relations with tonal centers. Distor-
tions of intervallic structure are more noticeable for familiar and tonal melodies that incorpo-
rate tonal- hierarchical relations (Graves & Oxenham, 2017), and less apparent for unfamiliar 
and less memorable atonal, randomly chosen melodic sequences, where listeners tend to rely 
more on contour cues (Dowling 1971, 1978). Whereas the pitch acuity and special pitch rela-
tions, such as octave similarity, appear to be specific to pitch perception, contour discrimi-
nation and recognition have analogues in other auditory percepts (loudness) and in other 
modalities (visual brightness) (McDermott, Keebler, Micheyl, & Oxenham, 2010a).

Melodic invariance  under transposition depends on maintaining constant frequency ratios 
among the notes.6 Other transformations, such as shifting the fundamentals of all notes by 
a constant frequency, preserve melodic contours (up/down changes in pitch direction), but 
distort intervals (frequency ratios). As  these nonmultiplicative (nonproportional, nonlogarith-
mic) shifts increase, first notes are heard as “sour” or mistuned, and eventually the melody itself 
becomes unrecognizable. Another transformation, melodic inversion, inverts the musical inter-
vals of a melody. For example, a fifth upward (3/2 f ) becomes a fifth downward (2/3 f ), altering 
both contour sign and frequency ratio. Melodic inversion immediately violates melodic invari-
ance. If one preserves the pattern of contour signs by octave- shifts of the inverted notes in the 
direction opposite of the inversion, one has produced an entirely new melody.

Inverted chords involve shifting one of the notes of a note- dyad or - triad by an octave upward 
or downward, thereby changing the pattern of respective pitch heights of the notes, but pre-
serving the chroma relations and relations vis- à- vis the tonic. Inverted harmonic dyads and 
triads are recognizable as “the same” interval or chord as their noninverted counter parts 
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(harmonic invariance  under inversion), and are consequently treated as equivalents in  music 
theory. Melodic sequences inverted this way, with single octave shifts that preserve chroma, 
are also recognizable, provided that the notes, such as  those of the piano, have harmonic 
overlaps in at least one common octave register. Deutsch’s (1972) well- known, unrecogniz-
able “mysterious melody” uses octave shifts with melodies of pure tones such that  there are 
no common registers in which interactions between sequential partials can occur. Likewise, 
rhythmic patterns of streams of pure tones in dif fer ent frequency registers tend to separate, 
whereas  those that overlap in the same registers fuse (Bregman, 1990).  These phenomena 
provide strong evidence for auditory pro cessing within roughly octave- wide frequency bands.

Inverting the temporal order of notes, or playing a non- palindromic melody backward, also 
disrupts melodic recognition. This disruption is likely due to the temporal asymmetry of short- 
term auditory memory; that is, notes are perceived in relation to their most recent pre de ces-
sors, their immediate tonal contexts.

 After unison (1:1), the octave (2:1) is the most salient musical interval. Octave similarity 
is thought to be “nearly universal to all cultures of the world” (Dowling & Harwood, 1986). 
Almost all listeners can perceive tones with F0s an octave apart (a frequency ratio of 2) as 
being more similar to each other than to other chromatic notes within the octave. Octave 
judgements are extremely precise, typically within 1  percent, and repeatable as long as lis-
teners attend to chroma and not to competing pitch height cues (Hoeschele, Weisman, & 
Sturdy, 2012).7 Using the method of adjustment, octaves can be accurately replicated, with 
standard deviations on the order of 0.5  percent, whereas  those for other intervals within the 
octave are on the order of 1  percent (Burns, 1999).

Octave matches are most accurate and stable for complex harmonic tones when the spec-
tral composition (timbre) of the two notes is similar.  Because complex harmonic tones an 
octave apart share half of their harmonics, listeners in such situations can match individual 
resolved harmonics as well as F0- pitches. For complex musical tones this similarity extends 
over multiple octaves. Virtually all of the world’s scales, if they span more than an octave, 
repeat at octave intervals. Thus,  because of octave similarity, pitch space has a circularity in 
it: by moving upward in pitch, one eventually comes back to a note that is similar to the one 
at which one started.  There is an analogous, circular, repeating structure to interspike interval 
repre sen ta tions of pitch (figure 5.10  later in this chapter).

Octave stretch involves octave matches of pairs of both pure and complex tones that devi-
ate very slightly from F0 ratios of exactly 2. The stretch is greatest for frequencies in the high-
est register of the piano (C7– C8, 2–4 kHz). Listeners match pure tones to slightly stretched 
octaves (1–4  percent) (Zwicker & Fastl, 1999), whereas for complex tones, this enlargement is 
much smaller (< 1  percent). In the piano midrange the stretch is on the order of 0.5  percent 
(2.009) (Dowling & Harwood, 1986).
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Musical Intervals
Most listeners identify and recognize dif fer ent musical intervals (frequency ratios) presented 
 either melodically (sequentially) or harmonically (concurrently), with roughly similar acuity.

In listening to  music, sequences of pitches are perceived relative to established tonal 
contexts, such that notes bear relations to previously presented ones, especially the tonic. In 
 these situations listeners may be able to use pitch cues (alignments between common har-
monics and/or subharmonics, as in figure 5.10  later in this chapter) in order to perceive 
intervals.

Experiments designed to estimate the ability to discriminate frequency- ratios without such 
pitch cues use isolated, transposed musical intervals. Typically  these experiments use a two- 
interval four- note paradigm in which a first interval N1N2 is compared with a second M1M2. 
In order to eliminate use of  simple pitch comparison cues (i.e., discriminating the pitch of N2 
vs. M2), the frequency of M1 is randomly varied. In this method, tonal context is provided by 
only one note, whereas in a tonal melodic context, all of the notes in the melody play a role 
to some extent in reinforcing the tonic as a reference pitch (tonality induction). Where pitch 
cues are involved, interval discriminations are precise, whereas when  these cues are mini-
mized or eliminated, interval discrimination is relatively coarse. By comparison with pitch 
discrimination and musical intervals in tonal contexts, discrimination of isolated transposed 
intervals presented sequentially is much coarser, on the order of half a semitone (3  percent) 
for experienced musicians and typically higher, from 1–3 semitones (6–18  percent) for listen-
ers without musical training (McDermott, Keebler, Micheyl, & Oxenham, 2010a).

Simply  because preserving musical intervals is critical for melodic recognition, one should 
not necessarily assume that intervals are explic itly identified and that melody perception con-
sists of sequences of identified isolated intervals between temporally adjacent pairs of notes. 
A melody is perhaps better conceived as a cohesive web of pitch relations than a sequence of 
musical intervals. Burns and Ward (1982, pp. 264–265) caution that “the  perception of iso-
lated musical intervals may have  little to do with the perception of melody”  because “melo-
dies are perceived as Gestalts, or patterns, rather than as a succession of individual intervals, 
and that interval magnitude is only a small  factor in the total percept.”

Several excellent reviews of interval perception as a form of categorical perception exist in 
the lit er a ture (Burns, 1999; Burns & Ward, 1982; Thompson, 2013). Burns (1999) argues that 
musical interval perception is a form of acquired categorical perception par excellence, with 
category bound aries being even more stable than for phonetic categories. That the catego-
ries are learned is consistent with improvement with training, up to a point. “Although the 
best possessors of relative pitch are able to identify chromatic semitones without error, they 
are not able to identify the quarter tones between chromatic semitones with perfect consis-
tency” (Burns, 1999, p. 22).
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Burns considers  whether patterns of interval perception support the existence of “natu-
ral” musical intervals based on  simple frequency ratios (i.e., just- tuned intervals), but he 
compares just tuning mainly against the 12- tone equal temperament chromatic scale, which 
is a very close approximation (within 1  percent) to the just- tuned Pythagorean consonances, 
twelve equally tempered notes being the closest approximation (see figure 5.5 and discus-
sion  later in this chapter). Given the relatively coarse quartertone to semitone (3–6  percent) 
resolution of sequential interval perception, it is not surprising that interval perception does 
not necessarily follow one or the other set of tuning standards.

Tonal Context Is Impor tant for Perception of Intervallic Relations
In tonal  music, unlike situations involving isolated pre sen ta tions of transposed intervals, all 
successive notes are heard in the tonal context formed by the last preceding notes. The build-
ing up of a tonal context by several successive notes can influence detection of mistunings in 
melodies.

In a Japa nese study (Umemoto, 1990; see also Graves & Oxenham, 2017), student subjects 
with differing degrees of musical experience ( music vs. psy chol ogy majors, High vs. Low expe-
rience)  were able to detect quarter- tone (3  percent) mistunings in Tonal and Atonal melodies 
consisting of five notes. Tonal melodies consist of notes taken from the diatonic scale for a 
single key, whereas notes of atonal melodies  were drawn from the chromatic scale. Detection 
was always worst for the first tone (LT 15  percent correct, HT 60  percent correct), and best 
for the last three (LT ~70  percent correct, HT ~90  percent correct). Detection of mistuning in 
tonal melodies was consistently better than for atonal ones in all conditions by ~20  percent.

Ability to accurately produce musical intervals can also provide insights into the relational 
structure of pitch space. The accuracy of production of musical intervals in per for mance 
(intonation) relative to fixed scales depends critically on the nature of the musical genre, 
 because in many genres microtonal inflections are used to convey affective cues, such that 
strict pitch accuracy would be heard as mechanical and cold. In genres in which notes are 
concurrent and sustained and a high value is placed on intonation, such as barbershop quar-
tets, musical intervals are replicated with high accuracy (less than 3 cents, Vurma & Ross, 
2006; 10 cents, ~0.6  percent, Burns, 1999).

An abiding question has been  whether musicians and vocalists, left to their own devices, 
tend to produce note- frequencies biased  towards just- tuned rather than equally tempered 
(ET) intervals (see next section), but  there appears to be no bias  toward  either just intonation 
or equal temperament tunings (i.e., the singers align to each other’s pitches rather than to a 
scale, and this 10- cent accuracy is larger than most JI- ET discrepancies; see  table 5.1  later in 
this chapter, last column). Similar high precisions are seen for solo violinists as for singers 
(Loosen, 1993) in Burns (1999), but again  there appears to be no bias  toward one or the other 
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tuning system. This indifference may be due to the close approximation of ET to just tunings 
(<< 1  percent) for  those (consonant) musical intervals that would be most critical. The differ-
ences between just and ET tunings are usually small in relation to production accuracy and 
pitch variability, such as vibrato.

Summary
In our view, pitch space geometries, tonal hierarchies, and harmonicity- related aspects of 
consonance play the most impor tant roles in determining the overall structures of scales, 
melodies, and harmonies in tonal  music, whereas aspects of consonance related to roughness 
caused by beatings among harmonics are most impor tant for choosing tuning systems for 
fixed pitch instruments.

Scales and Tuning Systems

Descriptions of scales and tuning systems used in musical practice generally come  under the 
rubrics of  music theory, musicology, and ethnomusicology. Out of the continuum of pitch 
sensations on which we can make thousands of pos si ble fine distinctions, most of the world’s 
tonal  music uses relatively small sets of discrete distinguishable pitch classes (see figure 5.3).

Scales
Nineteen dif fer ent scales and tuning systems from dif fer ent world musical cultures are shown 
in figure 5.3 ( Justus & Hutsler, 2005). Other recent comparative studies have examined scales 
within the wider context of all musical properties that might characterize “musicality” (Sav-
age et al., 2015; Trehub et al., 2015).

Scales are defined by distributions of the approximate frequency- ratios of notes within a 
single octave, which covers a two- fold range of note- frequencies. The horizontal axis is scaled 
in terms of log- frequency, such that equal frequency- ratios span equal spatial extents. Dark 
vertical bars indicate the frequency positions of scale- notes, whereas, for comparison and ref-
erence, gray bars indicate positions of the Western twelve- note, equally tempered chromatic 
scale. This scale divides the octave into twelve equal ratio- steps (“twelve tone equal tempera-
ment” or 12- TET), each of which is a semitone. A semitone is a ~6  percent change in frequency 
(21/12 = 1.0595), and a  whole tone consists of two semitones (22/12 = 1.1225) or ~12   percent. 
Adjacent keys on a piano produce notes a semitone apart in fundamental frequency.

Virtually all of the world’s scales subdivide the octave into a relatively small number (5–24) 
of discrete pitches, repeating this octave organ ization to cover the entire pitch range that is 
used. The eight piano keys of figure 5.1 span one octave, whereas the eighty- eight keys of the 
entire piano keyboard in figure 5.2 span almost the entire pitch range of musical tonality, 
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Figure 5.3
Comparison of the scales and tuning systems in  music from dif fer ent parts of the world. The chart of scales 
was adapted from Justus & Hutsler (2005). Top: An octave range of note- frequencies (the horizontal posi-
tions of the black vertical marks) is shown for each scale. The horizontal axis indicates note- positions 
within the octave, in log- frequency units (semitones). Gray vertical marks indicate the note- positions of 
the equally  tempered (12- TET), Western chromatic scale.  Middle: Nearest just intonation ratio and musi-
cal interval abbreviations (m: minor, M: major, TT: tritone). Bottom: Approximate equivalent locations 
of scale notes on the piano keyboard (Cn− Cn + 1).
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about seven and a half octaves, from 27.5 to 4,186 Hz. Above and below  these repetition fre-
quencies, octaves, musical intervals and melodies become unrecognizable for most listeners.

The reasons for this octave- based organ ization of scales involve the two- dimensional 
linear- circular structure of pitch space (figure 5.3b– d). The spiral structure of pitch space in 
turn may be due to the periodic nature of neural interspike interval repre sen ta tions of sound 
(figure 5.7  later in this chapter). Likewise, the upper frequency limits of musical tonality may 
be due to the operating limits of  those temporal neural repre sen ta tions.

Although dif fer ent scales divide the octave in dif fer ent ways (figure 5.3),  there are some 
commonalities between numbers of notes and their placements. Pentatonic, heptatonic/sep-
tatonic, octatonic/diatonic, and chromatic scales are common, having, respectively, 5, 7, 8, 
and 12 separate notes distributed throughout in the octave. Some of  these scales distribute 
notes approximately uniformly, in logarithmic frequency- ratio terms, whereas  others have 
decidedly nonuniform distributions.

Consonant musical intervals are incorporated into most of the world’s scales. Many world 
scales share similar notes, with almost all containing notes near the fifth and fourth notes 
and with many including notes near the sixth and third notes of the major Western diatonic 
scale (Shepard, 1982b). The frequency ratios of  these shared notes relative to the first note, 
the tonic, are all near  simple integer ratios: unison (1:1), octave (2:1), fifth (3:2), fourth (4:3), 
sixth (5:3), major third (5:4), and minor third (6:5).  These  simple ratios all produce relatively 
consonant note combinations. When pairs of notes with  these ratios are played together, 
they are perceived as more consonant (smoother, less rough, more unified) and are preferred 
by many listeners, who find them more pleasant (euphonious) than other more complex 
ratios, such as the tritone (√2) or the minor second (16/15).

The  simple, consonant ratios are referred to as the Pythagorean consonances,  because  these 
par tic u lar divisions of the octave  were discovered by the Pythagoreans in fifth  century BCE 
from their experiments with monochords with moveable bridges (Tenney, 1988; Barbour, 
2004).8  These ratios and their accompanying smooth, blended combinations of tones are 
also thought to have been utilized in the ancient  music of other widely separated cultures 
such as  those of China, India, and Persia. Presumably  these special intervals  were discovered 
through in de pen dent aural experimentation or reached distant corners of the world through 
cultural diffusion.

Subjective consonance ratings for pairs of notes from two modern studies, one focusing 
on tonal clarity (Kameoka & Kuriyagawa, 1969b) and the other focusing on pleasantness 
(McDermott, Lehr, & Oxenham, 2010b), both found the notes closest to the Pythagorean 
ratios to be most consonant (figure 5.4).

The  simple ratios are perceived as more consonant for two reasons: first,  because they 
minimize the beating of partials that produces roughness (sensory dissonance), and second, 
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 because they minimize the amount of competition between dif fer ent pitches (pitch stabil-
ity). For most musical pitched sounds,  these two aspects of consonance closely covary (com-
pare patterns of roughness judgments and estimates in figures 5.4 and 5.6 with pitch stability 
estimates in figure 5.11  later in this chapter).

The word consonance can mean many dif fer ent  things to dif fer ent  people, and its concep-
tual meaning has changed many times over the course of its long history (Tenney, 1988; Parn-
cutt, 2011a). Some meanings of the term and its opposite, dissonance, are related to hedonic 
or aesthetic auditory preferences (e.g., euphony, pleasantness), whereas  others are related to 
attributes of percepts (e.g., roughness, smoothness, tonal fusion, pitch stability).

Consonance can also suggest dif fer ent perceptual qualities and/or tonal preferences to 
dif fer ent listeners. Whereas the first study (Kameoka & Kuriyagawa, 1969) focused on com-
mon patterns of consonance percepts (tonal clarity) among subjects, the second (McDermott 
et  al., 2010b) focused on individual differences in consonance preferences (pleasantness) 
between them.9 In the latter, stimuli  were presented that in de pen dently manipulated par-
ameters related to roughness (beating of partials) and harmonicity, and it was observed that 
preference judgments of less musically oriented listeners depended on the degree of beating 
between harmonics (roughness), whereas  those of more musical listeners depended on har-
monicity (pitch unity).

Even with differences across individual listeners and variation in the instructive terms 
that subjects of psychophysical experiments are given,  these two studies and scores of  others 
show that  there is almost universal agreement among nonmusician listeners over which 
combinations of notes are more consonant than  others. Most  human listeners, even young 
infants (Trainor & Unrau, 2011; Trainor & Hannon, 2013), can readily discriminate between 
consonant and dissonant intervals. Neural models for consonance are discussed at length in 
the last section of this chapter.

The Western major diatonic scale (figure 5.3) includes all but one of  these consonances, 
the minor third (6:5). Almost all tuning systems in use, such as just intonation, Pythago-
rean tuning, and equal temperament, provide  either perfect or close approximations (within 
1   percent) to  these consonant ratios. Both Arabic- Persian and Indian scales contain notes 
that closely approximate the Pythagorean consonances.10 The Persian- Arabic scale shown 
has twenty- four notes that are equally distributed within the octave (24- TET), such that it 
contains within it the 12- TET chromatic scale. Some scales having more than twelve notes, 
with “microtonal” steps smaller than a semitone, such as the Arabic- Persian scales and the 
Indian system of twenty- two srutis (distinctive pitches), similarly contain the notes of the 
chromatic scale plus other notes and/or frequency regions that subtly deviate from them.

However, even within the limited sample of figure 5.3,  there are notable exceptions to the 
generalization that all tonal systems include approximations to Pythagorean consonances. 
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 These are the Balinese gamelan scales and tunings, which appear to lack fifths (3:2) and sixths 
(5:3). However, gamelan  music is quite diverse, and  others have reported gamelan intervals 
close to minor thirds, fifths, and sixths (Forster, 2010; Duimelaar, 2017). The ethnomusico-
logical lit er a ture has a spirited, ongoing discussion of gamelan tunings, whose complexity is 
compounded by the multiplicity of Indonesian musical styles and the varied, individualized 
tunings of instruments and ensembles. Some theorists have posited that the metallophones, 
which produce inharmonic tones, are tuned to minimize the roughness that arises from 
beating partials (Sethares, 2005), whereas  others have asserted that the shimmering, beating 
patterns are a positive, sought- after aesthetic feature.

Western chromatic scales and note notations  Table 5.1 gives interval names, note names, 
and frequency- ratios for Western chromatic (twelve- note) scales that use just intonation 
( JI) and equal temperament (ET) tuning. Similar  tables have been presented in other reviews 
(Handel, 1989; Burns, 1999; Rasch, 1999). The scales span an octave range (C4– C5), for which 
absolute frequencies of the notes are given. The first column gives the musical interval name 
of the note, which is its ordinal scale degree (1st, 2nd, 3rd, .  … 7th) in  either the Western 
diatonic major or minor scale.

The second column gives the number of semitone steps from the tonic. The third column 
gives the note name in Sofége or solfeggio notation, which associates pitches with sung 
syllables (“solmization”) for remembering and recognizing musical intervals in musical ear 
training. Although the two uses coincide  here, a Solfége note name can mean  either a spe-
cific pitch (fixed do = C) or interval (moveable do = tonic). The next column pres ents the letter 
names of the notes, and subsequent columns show numerical values of note- ratios and abso-
lute frequencies. The last column computes the percentage frequency differences between 
intervals of the two tuning systems.

The names of musical intervals associated with dif fer ent frequency ratios are given in the 
first column of  table 5.1 (see also figure 5.1).  These names are derived from the scale degrees 
of notes in the major and minor diatonic Western scales. Thus, unison, major second (M2), 
major third (M3), fourth (M4), fifth (M5), major sixth (M6), and major seventh (M7) are the 
notes of the major scale, whereas minor second, (m2), minor third (m3), fourth (m4), fifthh 
(m5), minor sixth (m6), and minor seventh (m7) are notes in the minor scale.

The notes of the diatonic major scale are designated using alphabetic letters A– G. Additional 
sharps (#) or flats (♭) indicate other pitches in the chromatic scale that are 1 semitone (~6  percent 
in frequency) higher or lower, respectively, from each lettered pitch. In musical letter notation, 
the successive notes of the Western diatonic scale (seven notes with eight unequal divisions of 
an octave) are given ascending alphabetic designations A, B, C, D, E, F, and G. The successive 
notes of the chromatic scale (twelve divisions of the octave) are A, A#, B, C, C#, D, D#, E, F, F#, 
and G, G#, or alternately, A, B♭, B, C, D♭, D, E♭, E, F, G♭, G, A♭. In equal temperament tuning, 
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A# denotes the exactly same pitch as its enharmonic equivalent B♭, but in other tuning sys-
tems, such as Pythagorean tuning,  these two notes can differ very slightly (Handel, 1989).

In scientific pitch notation, pitches of the same chroma class but in dif fer ent octaves 
are given dif fer ent subscripts (e.g., A3, A4; see figures 5.1a and 5.2). Counterintuitively, the 
octave changes with the transition from B to C: for example, the diatonic ascending pitch 
sequence goes C2- D2- E2- F2- G2- A2- B2- C3- D3- E3- F3- G3- A3 and so on. As the scale ascends into a 
new octave, the letter sequence repeats, thereby replicating the chroma circle within a new 
range of pitch heights.

Absolute frequencies are given for scales anchored at reference notes A4 = 440 Hz (ET) and 
C3 = 261.61 Hz (ET, JI).  Because most listeners have only relative pitch, and not absolute pitch, 
the precise frequency of this reference does not change their perception of a scale. Large 
shifts, however, can move the positions of scale note- frequencies within vocal and instru-
mental ranges.

A standard reference frequency is obviously critical when multiple instruments with per-
manent fixed tunings are involved. Concert pitch refers to the mapping of a reference notes to 
note- frequencies for musical ensembles. Modern standard concert pitch sets A4 at 440 Hz, but 
some individual orchestras choose dif fer ent references that range from 436–445 Hz. Some 
early  music ensembles set A4  either a semitone lower or higher than 440 Hz.

 Table 5.1 also shows frequency ratios of equally tempered intervals expressed in cents. 
Cents are commonly used by psychophysicists and piano tuners to describe fine frequency 
distinctions within a semitone as well as locations within the octave. The cents metric loga-
rithmically divides the octave into 1,200 cents, each semitone being 100 cents. Cents (x) can 
be converted to frequency ratios (y) using y = 2x/1200 and ratios (y) can in turn be converted 
to  percent frequency differences (z) using z = 100 (y − 1). The musical interval of the tritone is 
600 cents, half an octave, at its geometrical mean. The corresponding ratio of the tritone 
is exactly √2, often approximated by 45/32. The arithmetic mean of the octave is 3/2, at 702 
cents, so the equally tempered fifth (700 cents) deviates from the just- tuned ratio by just 2 
cents or 0.11  percent.

Modal and non- diatonic scales Modal scales are scales that use the same sets of notes but that 
have dif fer ent tonics; i.e., they begin with dif fer ent notes. The so- called Greek or ecclesiasti-
cal modes in Western  music consist of diatonic scales. Diatonic scales, as discussed  here, are 
seven- note scales that consist of two half- steps and five whole- steps, with the two half- steps 
separated by at least two whole- steps.  Table 5.2 shows the seven dif fer ent modes that share 
the note C as their tonic and the musical intervals associated with each mode.  These modes 
share the same set of seven pitches, the white keys on the piano, and therefore the same 
set of inter- note intervals. But each mode has a dif fer ent tone color due to the positions of 
scale- notes within the tonal hierarchy, i.e., the relation of the notes in the scale to the first 
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note, the tonic. Scales are anchored pitch systems, with the first note being the tonal center, 
the tonic. The musical interval relations between scale notes and the tonic set up a tonal 
hierarchy of perceptual- distances from the tonic. As the first note of the scale, the tonic 
establishes a tonal context for all notes that follow; if the scales have unequal step sizes, then 
dif fer ent modes include dif fer ent sets of musical intervals having dif fer ent relations to the 
tonic. Despite having the same notes, the dif fer ent orderings of semitone and  whole tone 
steps produce dif fer ent sets of frequency- ratios vis- à- vis the tonic, thereby imposing dif fer ent 
“structural hierarchies on the set of pitches” (Dowling & Harwood, 1986, p. 116).

The seven modes thus contain dif fer ent sets of musical intervals in relation to the tonic. 
The modes differ in their mixtures of consonant and dissonant intervals, giving them dif-
fer ent sets of tonal possibilities. Examining  table 5.2, one can see that all the modes share a 
common tonic (T) and octave (O). Six of the seven have the fifth, and six have the fourth, 
but only five have both. Three (Ionian, Dorian, Mixolydian) have the consonances of the 
fourth, fifth, and major sixth (M6). Five have a  whole step for the second note in the scale, 
two (Phrygian, Locrian) have a half step instead. Two modes (Lydian, Locrian) have the tri-
tone. The effect of  these vari ous tonal palettes consisting of dif fer ent sets of musical intervals 
is to give characteristic colors to the melodies and harmonies that are produced using them.

The Ionian mode is the modern Western major scale, whereas the Aeolian mode is the 
modern minor scale. The modal system developed by  music theorists in the  Middle Ages 
was inspired by what was then known about ancient Greek scales and also by ecclesiastical 
modes, which  were diatonic scales used for chants. The modes  were arrangements of  whole 
tone and semitone steps that spanned an octave. The vari ous Greek and church modal sys-
tems  were codified into the modern system of modes shown in  table 5.2 and assigned Greek 
place names. Alternate modes are often used as alternatives to major scales (Ionian) or minor 
scales (Aeolian), and their use can be found in traditional folk, jazz (“modal jazz”), and some 
classical  music. Many of  these Western modal scales have counter parts in non- Western musi-
cal cultures (Gill & Purves, 2009), for example, in Indian thāts.

Still more scales become pos si ble if constraints on numbers of notes and distributions of 
 whole and half steps are relaxed.  These scales are non- diatonic, and some that are commonly 
used in world  music are presented in  table 5.3. As with the modal scales above, each scale has 
its own characteristic tonal coloring due to the musical intervals that are available and their 
relations within the tonal hierarchy.

Tuning Systems
Whereas the scale includes the approximate locations within the octave of the pitches of 
the tonal system, tuning systems determine the precise ratios between fundamental frequen-
cies (F0s) scale- notes. Tuning systems provide methods for precisely fixing the pitches of 
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scale- notes,  either by mathematical rules that specify ratios of note frequencies or by instru-
ment tuning methods.

Tuning is most impor tant for blending simultaneous notes together. Tuning is especially 
critical when the instruments involved have fixed pitches (e.g., frets and keyboards), the 
notes are concurrent and sustained, and environments have long reverberation times (e.g., 
pipe organs in cathedrals). Systems of exact, preset tunings are least critical in situations 
where musicians adjust and modulate pitch as they play, as with  human voices and unfretted 
stringed instruments. In solo passages, intonational variability in playing melodic sequences 
can easily exceed the subtle differences between the notes of dif fer ent tuning systems.

Consonance considerations become paramount when multiple sustained notes are sounded 
together. Whereas interval discrimination is relatively coarse, pitch discrimination is finer 
by an order of magnitude or more.  Because we can hear the very low frequency beating of 
slightly mistuned notes, detection of mistunings between concurrent notes can be even 
more precise (Burns & Ward, 1982; Burns, 1999; McDermott et al., 2010a). To put  these into 
perspective, A. J. Ellis, the En glish translator of Helmholtz’s On the Sensations of Tone (1885), 
compared the detection of melodic mistunings relative to unison (pitch discriminations) with 
 those of concurrent notes:

No ear has yet succeeded in hearing the interval of 1 cent between two notes played in succession. 
Even the interval of 2 cents requires very favorable circumstances to perceive, although 5 may be eas-
ily heard by good ears, and 10 to 20  ought to be at once recognized by all singers and tuners. When 
the two notes are played at the same time,  these 2 cents make a distinctive difference in consonances, 
and 5 cents are found to be out of tune.11 (p. 487)

Just intonation  Table 5.1 pres ents the frequency ratios and absolute frequencies for a just- 
tuned chromatic scale anchored at A4 = 440  Hz. In the just- tuned chromatic scale twelve 
notes that are roughly, though not exactly, equally distributed within the octave are cho-
sen. The resulting unequally spaced intervals are constructed using ratios of small integers 
(ratio column). Decimal equivalents (decimal column) are shown for comparison with  those 
of equal temperament. The intervals in the just scale contain exact approximations of the 
Pythagorean consonances (3:2, 4:3, 5:3, 5:4, and 6:5) as well as less consonant ratios (16:15, 
9:8, 45:32, 16:9, 15:8).

Not shown in  table 5.1 is a third tuning system, Pythagorean tuning, which shares many 
intervals with just intonation systems. The Pythagorean scale, in ven ted ca. 200 BCE, was 
widely used  until roughly 1600 (Handel, 1989; Guthrie, 1987; Partch, 1974; Bibby, 2003; 
Barbour, 2004). The scale is based on series of perfect fifths (3:2) and octaves (2:1), such that 
the ratios take the form (3n/2m) or their reciprocals. Thus, Pythagorean tuning preserves per-
fect fourths (4:3), fifths (3:2), and octaves (2:1), and it has the merit of being easy to tune 
by ear. However,  because the octave cannot be evenly divided using  these operations, some 
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uneven sized intervals (“wolf intervals”) with audible deviations (“Pythagorean commas”) 
on the order of 1.5  percent emerge.

Pythagorean tuning also produces notable deviations from just intonation for thirds. 
Both Pythagorean major thirds (34/26 = 81:64 = 1.2656) and minor thirds (25/33 = 32/27 = 1.185) 
differ from their just- tuned counter parts (5:4 = 1.25 and 6:5 = 1.2 respectively) by 1.2  percent, 
making  those note combinations sound dissonant, discouraging the use of thirds in 
chords.

The history of tuning systems, from ancient to modern, is intricate (von Helmholtz, 
1885/1954; Rasch, 1999; Barbour, 2004), frequently lending itself to polemics (Partch, 1974; 
Duffin, 2007). As musical practice began to use more thirds,  music theorists searched for 
adjustments to Pythagorean tuning. The increasing use during the Re nais sance of keyboard 
and fretted string instruments, as well as the desire to change keys (modulate) at  will, drove 
theorists and musicians to experiment with vari ous adjusted tuning systems, such as mean-
tone temperament and equal temperament.

Equal temperament Equally tempered (ET) scales divide the octave equally, in logarithmic 
frequency- ratio terms, thereby distributing notes with exact uniformity. A scale with n such 
steps is designated an n- TET (n- Tone Equal Temperament) or n- EDO (Equal Division of the 
Octave) system. To divide the octave into m equal ratio- steps to compute ratios for an m- TET 
scale, each equal ratio step should equal the m-th root of 2, i.e., 21/m. To compute the ratio 
corresponding with the n-th step in the m- TET scale, this stepsize is raised to the n-th power, 
such that the ratio equals 2n/m. The standard Western equal temperament chromatic scale is a 
12- TET or 12- EDO system (m = 12). Thus in  table 5.1, the seventh step in the chromatic scale, 
a musical interval of a fifth, yields an equal temperament ratio of 27/12 = 1.4983, which is quite 
close to the just intonation ratio of 3/2 = 1.5000 (Δ = 0.11%).

Twelve- tone equal temperament (12- TET) appears to be an optimal means of dividing the 
octave using a small number of divisions in terms of closely approximating the Pythagorean 
consonances (see discussion in “Design Princi ples” section below and figure 5.5). For most notes 
in the scale,  these tunings are fairly close approximations to each other (last column in  table 5.1), 
the smallest differences being for fifths and fourths (Δ ~ 0.1%), and the largest ones for minor 
3rds and major 6ths (Δ ~ 0.9%). The differences between JI and ET tunings are therefore fairly 
subtle, less than 1  percent (1/6 a semitone, ~16 cents) for all intervals. For the most consonant 
intervals (fourths and fifths)  these deviations are much smaller, on the order of 0.11  percent, 
rendering the differences almost completely inaudible. Audible differences between  these 
systems are least apparent in melodic contexts, in which notes are played sequentially, and 
most apparent when sustained multiple notes (chords) are sounded at the same time.

Equal divisions of the octave appear to have been used in ancient Chinese  music and in 
the  music theory of Aristoxenus. Twelve- tone equal temperament (12- TET) systems  were 
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proposed and used in Western  music beginning in the early sixteenth  century (by Henricus 
Grammateus, Giacomo Gorzanis, and Vincenzo Galileo), but it was not  until much  later that 
 these systems  were precisely described in numerical terms, first in 1584 by Zhu Zaiyu (朱載堉, 
Ju Tzayyuh, Chu- Tsaiyu), a prince of the Ming court in China (Picken, 1957; Barbour, 2004), 
then by Simon Stevin in Flanders, circa 1605 (Bibby, 2003) and fi nally with Mersenne’s 
codification of the theory in his Harmonie Universelle in 1637 (Rasch, 1999; Barbour, 2004).

This standardization of scale step- size has the practical effect of making frequency ratios 
between notes in the scale in de pen dent of their relation to a par tic u lar tonic, which in 
turn permits  free writing in and modulation to multiple keys (tonics) without subtle key- 
dependent alterations of frequency ratios.

Design Princi ples
Why do our scales have the structure that they do— that is, why  these notes and not  others? 
The reasons divide into explanations based on universal biological constraints, such as the 
structure and function of  human and animal auditory systems, and  those based on specific 
cultural practices. The two kinds of explanations are complementary.  Those grounded in 
auditory physiology necessarily focus on features that are common to all scales, whereas 
 those grounded in ethnomusicology necessarily focus on cultural differences and the specific 
social  factors that might explain them.

Although the acoustics and the auditory system provide some constraints on how dif fer-
ent combinations of musical notes  will sound, the aesthetic choices of which specific com-
binations of pitches and timbres  will be utilized often depend heavi ly on common practices 
and meanings of a musical culture. The par tic u lar scales  adopted by a musical culture reflect 
a mixture of auditory constraints, cultural conventions, aesthetic ends and preferences, and 
in some cases the musical instrument technologies that are available.

Which notes and note frequencies are chosen for a given type of  music is an aesthetic deci-
sion whose purpose is to bring about desired effects on listeners (the fine arts as aesthetic 
engineering).  Music theory lays out a general set of design princi ples and provisional, pre-
scriptive rules for how to achieve specific perceptual, cognitive, hedonic, and aesthetic ends 
within given cultural or subcultural contexts.

Scales determine the framework of pitches that are utilized in a given practice of tonal 
 music. They can be considered in terms of specifying the primitive categories of tonal gram-
mars (Handel, 1989). Perceptual and cognitive constraints on scale construction and tuning 
have been proposed (Dowling & Harwood, 1986, pp. 92–95; Burns & Ward, 1982; Burns, 1999); 
 these are included in this discussion of basic design princi ples (constraints).

Scale design choices include continuous versus discrete sets of pitches, numbers of pitches, 
F0- range, scale repetition span (e.g., octave, tritave), and placement of notes within the 
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repetition span. Tuning constraints involve more precise specifications of  either pitch fre-
quencies or instrument tuning methods.  These are soft, defeasible constraints, such that 
 there can be tradeoffs between scales optimized for one or another set of musical goals. Scale 
structure determines in part how “good”  these scale notes and note combinations sound 
(in terms of what ever aesthetic criteria are  adopted), the expressive range of the pitch and 
interval set, how easily specified tunings can be implemented, and how easily vari ous musi-
cal modulations can be achieved. As with any other tool,  there are no objectively “perfect” 
scales, only  those that work better or worse for par tic u lar musical ends in par tic u lar contexts.

Most tonal systems consist of discrete pitches, with seven or fewer unequally spaced pitches 
per octave consisting entirely of “small intervals” of a fifth or less (Savage et al., 2015):

1. Discrete versus continuous pitches. Discrete musical scales provide a common framework for 
coordination of pitch, much as meter provides a framework for coordination in time. 
A discrete set of common pitches enables groups of musicians to play together with a mini-
mum of pitch mismatches or beating (Burns, 1999).

2. Numbers of pitches. Burns (1999) has theorized that the relatively small number of discrete 
pitch categories might make melodies easier to distinguish and remember, just as the small 
number of discrete phonetic classes might make speech easier to understand.

3. Pitch range. All scale notes should lie within the existence region of musical tonality and 
encompass the pitch ranges of the musical instruments and voices of the musical genre.

4. Octave organ ization. Strong octave equivalence mandates that the scale should subdivide 
each octave and repeat, such that corresponding notes in each octave have chroma equiv-
alents in other registers. The experimental Bohlen- Pierce scale subdivides the tritave (3:1), 
repeating at tritave intervals. It has just intonation and equal temperament (typically 
13- TET) versions.

5. Consonant and dissonant intervals. Inclusion of both consonant and dissonant intervals 
in the scale allows for a range of consonance contrasts that can create tension- relaxation 
dynamics and emotional meaning.

6. Equal versus unequal scale steps. Equal temperament tuning systems divide the octave into 
equal frequency steps. Unequal scale steps that arise from just or Pythagorean tunings 
create noticeable tone colorations— due to small distortions of intervals— when playing 
 music in keys other than the one that was used to tune the instrument. Equal tempera-
ment permits keyboard instruments to play in any key without retuning, ensuring inter-
vallic uniformity amongst key modulations.

7. Ease of tuning. Some tuning systems are more difficult to implement than  others, and this 
can depend critically on the types of instruments and tuning procedures that are used 
(fixed vs. variable pitched, harmonic vs. inharmonic instruments, electronic vs. acoustic, 
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digital vs. analog, tuning by ear vs. pitch analyzer). Just- intonation tuning by ear can be 
achieved simply by minimizing audible beats and roughness, whereas equal temperament 
is considerably more complex. When piano tuners equally temper a piano by ear, they listen 
for specific beat rates between par tic u lar notes and systematically adjust string tensions 
 until the tunings converge on a set of uniformly spaced notes.

8. Tuning accuracy of consonant intervals. If smoothness (minimal roughness) and blending 
(maximal pitch fusion) are desired, especially for groups of concurrent, sustained notes, 
then tuning systems that provide nearest approximates to just intervals best achieve that 
end (Duffin, 2007; Partch, 1974). As roughness and harmonicity preferences prescribe, con-
sonance is maximized when frequency ratios of concurrent note pairs approach  those of 
small integers, i.e., for just tuning. Small deviations from just ratios are most noticeable 
and/or objectionable for consonant intervals: unisons, octaves, fifths, fourths, and major 
sixths. Such deviations are less noticeable for dissonant intervals, such as tritones, sec-
onds, minor sixths, and sevenths, possibly  because of the greater amount of roughness 
already pres ent and the shallower roughness gradients at  those points (figure 5.6d). Note 
frequencies should therefore ideally provide reasonably close (<< 1   percent) approxi-
mations to the just- tuned ratios of the major consonant intervals. Notably, although 
twelve- tone equal temperament gives close approximations for fifths (–0.11   percent 
mistuning) and fourths (+0.11  percent), it mistunes minor and major thirds, as well as 
major sixths by almost 1  percent (m3: flat 0.90  percent, M3: sharp 0.79  percent; M6: flat 
0.91  percent). Audible differences between just intonation and equal temperament are 
quite subtle for nonmusicians, but can much more apparent for musicians with highly 
trained ears.

9. Number of equal subdivisions of the octave. Equal temperament systems have one scale 
pa ram e ter: How many divisions of the octave? But why a twelve- fold division? In equal 
tempered scales, the number of subdivisions (n- TET) chosen should provide reasonable 
approximations to at least a few consonant ratios.

From the perspective of Western 12- TET scales, systems with more than twelve tones are 
often called “microtonal”  because their steps are smaller than a semitone. Although most world 
 music at this point in history is written using a 12- TET tuning system, Arabic  music uses a 
24- TET system and Indian  music uses a twenty- two- tone system, both of which include exact 
or close approximations to all of the Western 12- TET notes (figure 5.1). A number of 12- TET 
inclusive systems are mixtures of equal temperament intervals plus just intonation intervals 
for consonant ratios (see, e.g., discussion of Persian scales in Helmholtz, 1885/1954). Burns 
(1999) notes that “three of the major non- Western musical systems (Indian, Chinese, and Arab- 
Persian) have inclusive scales approximately equivalent to the Western chromatic scale, and, 
hence, have the same propensity for the perfect consonances (octaves, fourths, and fifths).”
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 Music has been written for many dif fer ent equal temperament systems, and  there is a 
considerable lit er a ture, historical and con temporary, that explores the manifold musical pos-
sibilities of  these alternative systems, past, pres ent, and  future (Sethares, 2005).

Dif fer ent equal frequency ratio subdivisions of the octave yield note tunings that give 
better (closer) or worse (more distant) approximations of interval frequency ratios associ-
ated with consonance maxima (see figures 5.4 and 5.6). Note- frequency ratios and the mean 
deviation (“mistuning”) between just and ET systems (“tuning error”) for major Pythagorean 
consonances (4th, 5th, and major 6th) are plotted in figure 5.5 as a function of the number 
of equal ratio divsions of the octave (n- TET).

Considering n- TET systems up to eigh teen notes per octave, the 12- TET, 7- TET, and 5- TET 
systems provide the best approximations to the major consonances (figure 5.6b), with 12- TET 

Figure 5.5
Equal temperament approximations to major consonances in the octave. Left. Comparisons of musical 
interval ratios for dif fer ent equal logarithmic divisions of the octave (2–16 TET systems). Circles mark ET 
intervals associated with scale notes; lines indicate ratios of prominent consonant intervals (fifth (3:2), 
fourth (4:3), major sixth (5:3), major third (5:4), minor third (6:5) (see Sethares, 2005, p. 58). Right. Aver-
age tuning error to consonances (fifth, fourth, and major sixth) as a function of the number of equal 
divisions in the octave (NTET), indicating how well the ET system approximates  these consonances. 
Prominent relative optima are seen for the Western 12- TET system, the ET 7- TET heptatonic scale, and 
the ET 5- TET pentatonic scale.
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the closest. The 12- TET system is currently the most widely used worldwide, but 5- TET and 
7- TET systems  were used in ancient China and are common in existing world  musics (Burns, 
1999; Justus & Hutsler, 2005).  These include 5- TET xylophones from Thailand and Uganda. 
Although aesthetic and practical criteria for tuning Indonesian gamelans varies widely, 5- TET 
and 7- TET approximations can be found, with slendro scales resembling a 5- TET system 
(Sethares, 2005). Thus equal temperament is not a peculiarly Western invention.

Auditory Neural Models

The psy chol ogy of  music has engaged in longstanding questions of nature versus nurture 
and the origins of our affinity with  music.  These questions involve which aspects of  music 
perception, cognition, and preference are determined by relatively fixed, near universal 
mathematical- physical, biological, neural- psychological constraints, on the one hand, and 
which are determined by culture- dependent experientially mediated developmental and sta-
tistical learning pro cesses, on the other. Vari ous origin questions involve which aspects of 
our relations to  music are due to extrinsic, music- specific directed pro cesses of evolutionary 
natu ral se lection, and which are due to intrinsic structural- functional properties of ner vous 
systems.

Temporal codes are pos si ble structural features of ner vous systems that could make them 
amenable to modulation via the temporal patterns of stimulation. This would make  music an 
effective stimulus for modulating many dif fer ent types of internal psychological states, and 
the auditory system a particularly effective modality for impressing temporal patterns on 
neural populations.

Since the Pythagoreans, the pervasive role of frequency- ratios in intervals, scales, and 
tunings has led Platonically inclined theorists to attribute harmonic structure in  music to 
mathematical order embedded in the natu ral world. Cognitivist theories tend to attribute 
this structure to acquired knowledge of musical conventions through repeated exposure— 
schemas acquired through enculturation.

Bayesian theories attribute this structure to experience and associative learning (Temper-
ley, 2007). Some Bayesian theories attribute scale design to ratios pres ent in the resolved 
harmonics of voices (Schwartz, Howe, & Purves, 2003; Schwartz & Purves, 2004; Gill & 
Purves, 2009). However, theories that ascribe the origins of pitch, consonance, and harmony 
entirely to learned associations run into difficulties.  Those that rely on exposure to  human 
voices have difficulty explaining the existence region of musical tonality, which extends well 
beyond the F0- range of  human voices, spoken and sung, by 1–2 octaves in each direction. 
Extended learning periods also do not appear to be required for  music perception, as infants 
at very early ages are already predisposed to making consonance/dissonance distinctions and 
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recognize melodies, well before the effects of enculturation are seen (Trainor & Unrau, 2011; 
Trainor & Hannon, 2013). Clearly, statistical learning of  human voice patterns and musi-
cal cultural norms play some role in influencing tonal expectancies and preferences, but it 
appears less likely that they play essential, formative roles in enabling more basic aspects of 
 music perception. Instead, the statistical expectancies of voices,  music, and environmental 
sounds gleaned from short- term exposures (Loui, 2012) to longer- term enculturations may 
depend critically on prior perceptual organ ization of sensory information by the auditory 
system. Auditory theories tend to attribute structure in  music to the structure of neural repre-
sen ta tions of sound and to bottom-up automatic grouping mechanisms.  Because statistical 
and structural explanations typically address dif fer ent aspects of  music perception, they are 
not usually mutually exclusive. A full account of  music perception and cognition  will likely 
require incorporation of both types of  causes.

This section pres ents two auditory models most directly related to intervals, scales, and 
tunings: a psychophysically based model for roughness, and a temporal neural model for 
musical pitch, chroma relations, consonance, and harmony.

Models for Roughness
Roughness is an aspect of consonance that arises from beatings of nearby harmonics in the 
cochlea. This theory was originally proposed by Hermann von Helmholtz in his landmark 
1863 book on acoustics,  music, and hearing, On the Sensations of Tone as a Physiological Basis 
for the Theory of  Music (Helmholtz, 1885/1954) and refined by Plomp and Levelt in the 1960s 
(Plomp & Levelt, 1965).  Until very recently, roughness has dominated discussions of conso-
nance (Pierce, 1992; Sethares, 2005). The lit er a ture on roughness as it relates to consonance 
is complex, and  there are many other detailed criticisms that can be made of general theories, 
specific models, and psychoacoustic methods employed (Tramo, Cariani, Delgutte, & Braida, 
2001, Machinter, 2006).

What are the neural correlates of roughness? Figure 5.6 illustrates how the neural activity 
patterns associated with roughness are thought to be generated. A sensation of roughness is 
created when pairs of pure tones close together in frequency are presented si mul ta neously to 
the same ear. When two musical notes are sounded, harmonics from the two notes interact 
(figures 1.4 and 5.6a), and beating patterns at the difference frequencies (Δf ) of nearby pairs 
of harmonics are produced. The sets of beating patterns change as a function of musical 
interval (F0- ratio). If the two frequencies lie within a critical band, i.e., less than ~20  percent 
apart, they interfere (beat), creating low- frequency oscillations in amplitude (envelope mod-
ulations) at their beat frequency Δf. The sensation of roughness is related to the perception of 
this beating in the 20–120 Hz range. If the tones are almost identical in frequency (Δ f < 1%), 
they fuse, creating  little or no roughness sensation (figure 5.6c). However, if the tones are 



Figure 5.6
A psychophysical model of roughness. The model estimates degree of perceived roughness from fre-
quency proximities of beating harmonics. (a) Interactions between harmonics for dyads of complex 
tones consisting of harmonics 1–5 separated by dif fer ent equally tempered musical intervals. The sche-
matic indicates which pairs of harmonics would be expected to produce weak, moderate, or strong con-
tributions to total perceived roughness. (b) Beating between the first two harmonics of a minor second 
(440 and 469 Hz) and the modulated temporal firing pattern of an auditory nerve fiber tuned to this 
frequency region (Tramo et al., 2001). See also figure 1.4. (c) Roughness contribution as a function of har-
monic separation in terms of fraction of critical bandwidth (CB = 20% f). Function shown is Parncutt’s 
approximation to Plomp & Levelt’s dissonance  factor g (Machinter, 2006). Roughness contributions of all 
pairs of harmonics are then summed to estimate total dissonance (– consonance). (d) Predicted conso-
nance ratings based on roughness summation. Scale is inverted to show consonance. Note consonance 
peaks for fifths (3:2), fourths (4:3), major 6ths (5:3), major thirds (5:4), and minor thirds (6:5). Circles 
indicate ET musical intervals; crosses, JI ratios.
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slightly farther apart, from 2 to 12  percent, they create strong sensations of roughness. Thus 
two instruments playing sustained notes slightly out of tune with each other (1–2  percent) 
can produce noticeably rough sensations.

When two harmonic complex tones are presented together, the partials pres ent consist of 
integer multiples of the two respective fundamentals (F01, F02). Depending on the frequency 
ratios of the two fundamentals, i.e., the musical interval, and the frequency selectivity (band-
width) of cochlear filtering, dif fer ent partials of the two notes that are near each other in 
frequency beat, causing sensations of roughness.

In his On the Sensations of Tone as a Physiological Basis for the Theory of  Music Helmholtz out-
lined a resonance theory of cochlear function and proposed a model of consonance based on 
the aggregate amount of harmonic interaction in the cochlea. Helmholtz noted that  simple 
F0 frequency ratios of musical tones minimize this interaction, and hence they minimize 
the sensation of roughness. Further, he noted that equal temperament provides the best all- 
around approximation to  these ratios (best for fifths and fourths, worst for thirds), such that 
roughness is minimized (Helmholtz, 1885/1954, pp. 312–315).

Auditory masking experiments in the early twentieth  century by Harvey Fletcher and 
colleagues revealed that  these interactions are nonlinear; that is, the masking of one pure 
tone by another drops precipitously when the frequencies of the two tones are separated 
by more than a “critical bandwidth” (rule of thumb: Δ f > 100 Hz for f < 500 Hz, Δ f > 20% for 
f > 500 Hz). Following the introduction of critical bands into auditory theory, Helmholtz’s 
theory was revised by two groups (Plomp & Levelt, 1965; Kameoka & Kuriyagawa,1969a, 
1969b) to take into account the roughness contributions. Both groups conducted psycho-
acoustic experiments that estimated degree of roughness produced by pairs of pure tones as 
a function of amplitude and frequency separation, in terms of fraction of critical bandwidth. 
The contributions of all pairs of partials  were summed together to estimate the roughness 
produced by complex tones (the solid curve in figure 5.4a).

To illustrate the operation of  these models, a simplified psychophysical model of rough-
ness has been implemented using Parncutt’s approximation to this function (figure 5.6c). 
Pairs of partials closest to ~4  percent in frequency cause the most roughness, and the  roughness 
caused by the  whole complex tone dyad is well predicted by the sum of roughness contribu-
tions produced by individual pairs of nearby partials (Kameoka & Kuriyagawa, 1969a, 1969b). 
Thus, greater degrees of perceived roughness are produced when  there are more pairs of beat-
ing partials and the beating partials are closer together.

The psychophysically based roughness theory gives a precise and plausible account of 
why scales might incorporate close approximations to the integer ratios of the most prom-
inent Pythagorean consonances. When tuning musical instruments by ear, one can very 
accurately zero in on just- tuned intervals (octaves, fifths, fourths) simply by minimizing the 
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degree of beating (roughness) that is heard. For equal temperament, many of the locations of 
scale pitches in the octave also minimize roughness.

In order to ground psychophysically based roughness models in terms of neural substrates, 
it is necessary to examine how auditory neurons respond to combinations of harmonics. Over 
two de cades ago, we carried out a systematic study of the neural correlates of consonance in 
the auditory nerve of anesthetized cats (Tramo et al., 2001). Eight stimuli  were used: four pure 
tone dyads and four complex tone dyads (harmonics 1–6) separated by four musical intervals 
(minor second [16:15], fourth [4:3], tritone [45:32], and fifth [3:2]). We found strong neural 
correlates both for roughness and for pitch fusion/stability that replicated the rank ordering 
of perceptual consonance judgments for both pure and complex dyads.

When partials are close together, they beat, causing low- frequency temporal modulations of 
firing in auditory nerve fibers whose characteristic frequencies are near  those of the beating par-
tials (figure 5.6b). For individual harmonic tones, the beating does not interfere with F0- pitch 
 because all beats are at the difference frequency Δ f, which is the fundamental F0. In the case of 
two harmonically unrelated complex tones, however, the beat rates between dif fer ent pairs 
of nearby interacting harmonics are all dif fer ent and unrelated to the note F0s, such that the 
temporal beating patterns clash with each other and interfere with all other pitch- related spike 
periodicities that are related to individual harmonics, fundamentals, and fundamental basses.

As in the psychophysical models, perceptual roughness can be estimated from neural 
auditory nerve fiber (ANF) responses by quantifying the amounts of low- frequency modula-
tion of discharge rate (10–120 Hz) in dif fer ent neural frequency regions and summing them 
together to form a physiologically based estimate of roughness. The relative rankings of  these 
physiological roughness estimates, in auditory nerve (Tramo et al., 2001), brainstem (Bidelman 
& Krishnan, 2009, 2011), midbrain (McKinney, 2001; McKinney, Tramo, & Delgutte, 2001), 
and cortex (Fishman et al., 2001) all correlate highly with  those from  human psychophysical 
consonance experiments.

As attractive as this theory of beats may seem, it has many general shortcomings. First, 
roughness cannot account for perceived consonant and dissonant relations between succes-
sive pitches (e.g., arpeggios, melodies),  because roughness is produced by interactions of con-
current partials in the cochlea (tones that do not temporally overlap do not beat in the 
cochlea). A short- term auditory memory mechanism is needed to account for melodic con-
sonances. Second, dissonance can be produced without beating partials (Lipps, 1905/1995; 
Révész, 1954/2001). All nearby, interfering partials can be selectively removed from the 
tones, but the dyads can still sound dissonant  because of their inharmonicity. Inharmonic 
complex tones— that is, complex tones in which the frequencies of at least some or all par-
tials are not part of the harmonic series (nF0 for n = 1, 2, 3, …)— sound less consonant than 
their harmonic counter parts, even in the absence of beating partials. Fi nally, roughness is a 
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perceptual quality distinct from pitch, and as such does not appear to be directly involved 
per se in musical harmony.

Many theorists, including Helmholtz, recognized  these limitations and accordingly pro-
posed dual aspect models of consonance that include both roughness (sensory dissonance) 
and musical consonance. As a proto- Gestaltist alternative to Helmholtz’s theory of beating 
harmonics, a theory of tonal fusion was proposed in the late nineteenth  century by Carl 
Stumpf in his Tonpsychologie (Stumpf, 1883/1890; Lipps, 1905/1995; Boring, 1942; Révész, 
1954/2001; DeWitt & Crowder, 1987; Schneider, 1997). Modern conceptions of consonance 
related to  these ideas stem from models of musical pitch and competition between multiple 
reinforcing or competing pitches (pitch multiplicity, pitch stability). Pairs of tones separated 
by consonant intervals tend to fuse together and evoke one pitch related to their common 
fundamental, the fundamental bass, whereas dissonant intervals produce more distinct com-
peting pitches (pitch multiplicity).

Pitch multiplicity models are based on F0- pitches associated with common subharmon-
ics of all harmonics pres ent, be they individual notes or combinations of notes. In recent 
de cades Terhardt’s theory has been the most prominent of  these (Terhardt, 1974, 1977, 1984; 
Parncutt, 1989), but time- domain models based on temporal coding of sounds in the audi-
tory nerve have also been proposed (Tramo et al., 2001; Cariani, 2004a). A temporal neural 
pitch multiplicity model based on interspike interval repre sen ta tions is presented below.

Temporal Models for Musical Pitch
Temporal theories of consonance and harmony stem from neural repre sen ta tions for musi-
cal pitch that are based on temporal coding in the auditory system. This section introduces 
temporal codes, outlines a temporal theory for musical pitch and pitch multiplicity, shows 
how the structure of interspike interval repre sen ta tions mirror the spiral structure of chroma 
relations and scales, and applies the temporal model of pitch multiplicity to consonance 
(harmonicity) and harmony (pitch stability of chords).

Neural coding is a fundamental prob lem in neuroscience. For over 150 years, auditory sci-
entists have been debating the nature of the neural coding of sounds in the auditory system 
(Boring, 1942). The neural coding prob lem for audition entails identifying which aspects 
of neural activity subserve par tic u lar auditory functions (Cariani, 1999; Cariani & Micheyl, 
2012)—that is, what constitute “the signals of the system.” The debate has revolved around 
two complementary types of neural codes, channel codes and temporal codes.

Channel codes rely on patterns of responding neurons (neural channels) to convey infor-
mational distinctions. In rate- channel coding, distinctions are conveyed by which neurons 
fire how often (at which average rates). In the auditory system, rate- channel codes have 
historically been called “rate- place” codes.  These are based on spatial profiles of neural firing 
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rates  either as a function of their cochlear place of innervation or location within a neural 
cochleotopic, tonotopic map. Cochlear place determines the frequency tunings of each of 
the 50,000 ANFs that constitute the  human auditory nerve. By virtue of place- dependent 
cochlear tunings, the rate- place profile of the population provides a coarse, highly nonlinear 
repre sen ta tion of the  running power spectrum of the acoustic stimulus that changes dramati-
cally with sound level.

In contrast, temporal codes rely on temporal patterns of spikes to convey informational 
distinctions. A  simple temporal pattern code is an interspike interval code, in which time 
durations between spikes convey information. Temporal codes can be found in nearly  every 
sensory modality (Perkell & Bullock, 1968; Cariani, 2001b).

Temporal codes have a long history within auditory psychophysics and physiology (Bor-
ing, 1942; de Cheveigné, 2005; Moore, 2013). The main advantages of a temporal theory of 
hearing stem from the precise, invariant, and robust character of temporal patterns of spikes. 
Interspike interval distributions are level- invariant in a manner that parallels the precision 
and stability of pitch perception.

Temporal coding is immediately apparent in neuronal firing patterns at the level of the 
auditory nerve, illustrated in figure 5.7 (Cariani, 1999). The spike train data was recorded 
from auditory nerve fibers in an anesthetized cat (Cariani & Delgutte, 1996a, 1996b). The 
sound (figure 5.7a) is a single format vowel. Histograms showing spike timing patterns of 
ANFs with dif fer ent characteristic frequencies (CFs: 0.2–10 kHz) are shown in response to 
100 stimulus pre sen ta tions. The spike timing patterns closely follow the time structure of the 
positive part of the waveform  after it has been filtered by the cochlea.

Thus, in the auditory nerve, spikes are correlated with the stimulus waveform, such that the 
periodicities in the waveform are impressed on the temporal patternings of spikes.  Because of 
this correlation, also known as “phase- locking,” patterns of time durations between spikes— 
interspike intervals— reflect periodicities in the stimulus. First- order interspike intervals are 
time durations between consecutive spikes, whereas all- order intervals include  those between 
both consecutive and nonconsecutive spikes. Although models based on first- order intervals 
successfully predict acuity of pitch discrimination for pure tones as a function of frequency, 
level, and duration (Siebert, 1968; Goldstein & Srulovicz, 1977; Heinz, Colburn, & Carney, 
2001), all- order interval distributions, which include first- order intervals, can account for wider 
ranges of pitch phenomena.

Global temporal pitch models combine all- order interspike intervals from all CF- regions 
of the auditory nerve to form a temporal population- based auditory repre sen ta tion.  These 
population- intervals or summary autocorrelations based on all- order intervals among audi-
tory populations yield accurate, precise, and robust predictions for a wide range of F0- pitches 
(Meddis & Hewitt, 1992; Slaney & Lyon, 1993; Cariani & Delgutte, 1996a; Lyon & Shamma, 
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Figure 5.7
Temporal coding of pitch in the auditory nerve. Auditory nerve fiber (ANF) responses to a harmonic 
complex (single formant vowel, F0 = 80 Hz, pitch period 1/F0 = 12.5 ms, 100 pre sen ta tions at 60 dB SPL). 
(a) Stimulus waveform. (b) Peristimulus time histograms of dif fer ent cat ANFs as a function of character-
istic frequency (baseline value). (c) Stimulus power spectrum. (d) Stimulus autocorrelation function. 
(e) Stimulus- driven rate- place profile of ANFs; i.e., firing rate— spontaneous rate. (f) Population- interval 
distribution (PID) formed by summing all- order intervals from all recorded fibers (Cariani, 1999). Data 
from Cariani & Delgutte (1996a).
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1996; Cariani & Delgutte, 1996b; Meddis & O’Mard, 1997; Cariani, 1999).  These models are 
descendants of earlier neural temporal hypotheses for pitch (Licklider, 1951, 1959; Moore, 
1980; van Noorden, 1982) based on mass statistics of interspike intervals. Currently, global 
temporal models that use neurophysiologically realistic neuronal responses as inputs provide 
the strongest, most comprehensive predictions of musical pitches.12

In our studies of the neural correlates of pitch in the auditory nerve (Cariani & Delgutte, 
1996a, 1996b), all- order interspike interval distributions of individual auditory nerve fibers 
of all characteristic frequencies  were summed together into population- interval distributions 
(PIDs, 6F, a.k.a. summary autocorrelations, SACFs). The durations associated with the highest 
interval peaks in the PIDs predict the F0- period of the stimulus with high accuracy, precision, 
and robustness. The theory successfully predicts the pitches heard from the neural data over a 
wide range of F0s and stimulus types, harmonic and inharmonic, periodic and quasi- periodic.

Pitch strength (salience) is qualitatively predicted by the relative height (peak- background 
ratio) of pitch- related peaks. Fi nally, the PIDs resemble positive portions of the stimulus 
autocorrelation functions (ACFs) (compare figure 5.6d with 5.6f), such that  these temporal 
population- based repre sen ta tions can serve as general purpose neural repre sen ta tions of the 
stimulus power spectrum, up to the frequency limits of useable phase- locking, roughly 4–5 kHz. 
Other studies have shown that this purely temporal, global interval information is sufficient 
for representing multi- formant vowels (Palmer, 1992), and therefore also  those aspects of 
musical timbre that depend on low- frequency spectrum.

Global temporal pitch models can predict virtually all pitches produced in tonal musi-
cal contexts, which are invariably harmonic and near- harmonic complex tones with F0- 
periodicities below ~4 kHz. They also predict pitches for other classes of stimuli that can 
carry a melody (support chroma relations): low- frequency pure tones (f < ~4 kHz), complex 
tones with high, unresolved harmonics, inharmonic complex tones (as produced by bells, 
lithophones, and metallophones), amplitude modulated noise (“nonspectral pitch” [Burns & 
Viemeister, 1976, 1981]), repetition noise, and spectral edge pitches. With additional assump-
tions regarding binaural cross- correlation and cancellation operations, population- interval 
repre sen ta tions can also plausibly account for binaurally created pitches (e.g., the Hug-
gins pitch) that can also support musical melody recognition. The only chroma- supporting 
pitches that  these peripheral temporal repre sen ta tions clearly cannot explain are Zwicker 
tone auditory afterimages (Gockel & Carlyon, 2016), which likely have a more central origin. 
It is not yet clear  whether Zwicker tones above 4 kHz can support chroma relations.

Some psychophysicists adopt a “two- mechanism” model for F0- pitch (see chapter 1 in 
this volume), using a strong spectral pattern mechanism for pitches of resolved harmon-
ics and a weak temporal pattern mechanism for unresolved harmonics (Carlyon & Shack-
leton, 1994; de Cheveigne, 2010). Pitches of unresolved harmonics produce significantly 
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weaker F0- pitches with much coarser discrimination thresholds. However, despite their 
lower saliences, unresolved harmonics can nevertheless support musical tonality (interval 
and melodic recognition). Neurons that are selective for pure tone frequencies and the cor-
responding F0s of both resolved and unresolved harmonics have also been found at the 
cortical level (Bendor & Wang, 2005), which suggests that they may be tuned to common 
incoming temporal patterns of spikes that  these stimuli share, rather than integrating dif fer-
ent types of neural information arising from entirely separate pitch mechanisms.

 There are some known functional dissociations between the two classes of pitch. Some 
amusic listeners, who cannot make musical interval judgments if the note- harmonics are 
perceptually resolved (i.e., the kinds of stimuli that predominate in tonal musical contexts), 
can nevertheless make such distinctions for F0- pitches of higher- numbered, unresolved har-
monics (Cousineau, Oxenham, & Peretz, 2015).13

Neural Basis of Chroma Relations
Temporal codes provide a pos si ble means of explaining the ubiquity and importance of 
frequency- ratios in  music perception (Burns, 1999).  Simple ratio theories are usually mentioned 
in discussions of theories of consonance, and often dismissed, fairly or not, as unphysiologi-
cal theories or Pythagorean- Platonic numerological fantasies (e.g., Révész, 1954/2001; Plomp 
& Levelt, 1965; Sethares, 2005; Bowling & Purves, 2015). However, reasonable explanations 
for frequency ratios that are firmly grounded in auditory neurophysiology are pos si ble.

A number of auditory neurophysiologists and theorists have suggested that chroma rela-
tions might have a basis n temporal coding. Modern perspectives couched in terms of tempo-
ral codes are essentially neural versions of Galileo’s observations concerning the regularities of 
sounds with  simple ratios.14 Centuries  later, Licklider’s (1951) temporal autocorrelation model 
provided a framework that could explain a wide range of auditory pitch phenomena, including 
the role of  simple frequency ratios, through the interactions of common periodicities.15

Along similar lines, the auditory neurophysiologist Jerzy Rose, who carried out early inves-
tigations on the temporal discharge patterns of auditory nerve fibers, related frequency- ratios 
to temporal cadences of neural discharge.16 Roy Patterson (1986) observed that the temporal 
firing patterns of auditory nerve fibers have a repeating, spiral structure that mirrors that of 
pitch space and musical scales (see figure 5.10 and the related discussion below).

Perhaps the most ambitious attempt to explain frequency ratios in terms of neural tem-
poral pro cessing was the “long pattern hypothesis” for pitch, harmony, and rhythm of 
Boomsliter and Creel (1961, 1963, 1970). Their theory was inspired by  music perception, 
Licklider’s temporal theory, and the ubiquity of phase- locking in the auditory nerve to both 
pitch- related periodicities and rhythmic patterns. As with pitch, albeit on slower time scales, 
strong arguments can be made for temporal coding of rhythm (Cariani, 2002). With their 
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Figure 5.8
Octave similarity and interspike interval repre sen ta tions. Left: Schematic of simulated auditory nerve 
fiber (ANF) population- interval distributions (PIDs) produced in response to pure tones and complex 
tones (n = 1–6). The peaks in the PIDs are located at subharmonics (1/f, 1/F0) of the pure tone frequencies 
f and complex tone fundamentals F0. Vertical lines indicate peak positions for f, F0 = 400 Hz. B. Frac-
tion of common interval peaks of half- wave rectified ACFs, 80–1800 Hz, 1 Hz steps, lags = 0−40 ms. Note 
that tones an octave apart (2:1, 1:2) share half their interval peaks;  those a twelfth apart (3:1, 1:3) share 
a third. The inset plot shows the fine structure of common intervals within the octave. The simulation 
used the Zilany, Bruce, and Carney model (2014). See text notes for par ameters.
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“harmony wheel,” Boomsliter and Creel (1963) graphically show the temporal similarities 
that exist between periodic patterns related by  simple ratios, which was developed into a 
theory of melody based on sequences of ratios. The theory postulated networks of reverberat-
ing delay- loops in the brain that could propagate temporal patterns, such that  simple ratios 
would be self- reinforcing: “The brain exhibits the properties of an apparatus that works by 
neural mechanisms of temporal recurrence” (Creel & Boomsliter, 1970). Time- domain neural 
information pro cessing operations and neural timing net architectures along  these general 
lines have since been proposed (Cariani, 2002).

Octave Similarity
Octave similarity is a strong perceptual effect around which virtually all musical scales are con-
structed. Several auditory scientists have suggested that octave similarity might be grounded 
in interspike interval distributions. (Ohgushi, 1978, 1983; Patterson, 1986). This is easiest to 
appreciate if one examines interspike interval distributions for dif fer ent pure tone frequen-
cies f and complex tone F0- periodicities. Figure  5.10 shows simulated auditory nerve all- 
order population- interval distributions (PIDs) in response to isolated pure and complex tones 
(n = 1 − 6) with dif fer ent ratio relations to 400 Hz.

Note first that the neural PIDs that are produced by pure and complex tones that have the 
same dominant periodicities (fpure = F0complex) and that evoke the same pitches also share simi-
lar patterns of major interspike interval peaks. This immediately explains the phenomenon 
of pitch equivalence— why pure tones and harmonic complexes with similar fundamental fre-
quencies produce similar pitches despite their very dif fer ent spectra.

Dif fer ent stimulus frequencies produce characteristic interspike interval patterns that repeat 
at subharmonics of the stimulus fundamental. The neural correlate of the pitch of a tone is 
likely to be a pattern of interspike intervals rather than preponderance of a single interval—
i.e., a pattern of PID peaks rather than one highest peak. Thus, the interval patterns for pure 
tones of a given frequency bear a high resemblance (major peaks at the same time lags) to 
their complex tone counter parts.

Octave similarity and chroma- equivalence are also explicable in  these terms. Tones an octave 
apart (1:1 vs. 2:1, 400 vs. 800 Hz) might also be regarded as similar,  because of the pattern- 
similarities of their repre sen ta tions. Tones an octave apart (400–800 Hz) share half their inter-
val peaks, and tones separated by other  simple frequency ratios also share peaks as well. 
The vertical lines in the plots of figure 5.10 show the characteristic rhythms of the interval 
alignments. The plots on the right show the fraction of common peaks (major and minor) 
that the 400 Hz interval pattern shares with  those produced by other tone frequencies. 
For the complex tones (harmonics 1–5),  there are also shared peaks within the octave (inset 
plot) that are associated with the Pythagorean consonances (3:2, 4:3, 5:3). The rank ordering 



194 P. Cariani

of  these magnitudes comports with  those of consonance judgments (figure 5.4) as well as 
estimates from roughness and pitch fusion models (figures 5.6 and 5.9).

A common, but weak, explanation attributes octave similarity to harmonic overlap. Although 
two complex tones with F0s an octave apart share half their harmonics, octave similarity is 
also easily perceived for low- frequency pure tones and harmonic complexes with unresolved 
harmonics, where  there are no harmonics in common. Pure tones and complex tones of 
unresolved harmonics are also fully capable of conveying melodies and harmonies despite 
their lack of overlapping distinguishable harmonics.

The forms of the PIDs resemble the positive portions of the stimulus autocorrelation func-
tions.17 The major peaks all correspond to subharmonic periods (n/f, n/F0). All three of  these 
classes of sounds that produce octave equivalences do share common subharmonics (n/F0) 
that are well represented in all- order interspike interval distributions in the auditory nerve 
and brainstem.  These are shared patterns of subharmonics of the harmonics pres ent, not the 
harmonics themselves. Subharmonic relations and patterns of interaction provide a poten-
tial neural basis for chroma relations.

One can also compute Pearson correlations between simulated PIDs and arrive at similar 
results (Cariani, 2002). The pure tones show positive correlations only at small multiples (2:1 
and 3:1 and their inverses), whereas harmonic complexes also show prominent correlations 
related to the Pythagorean consonances. The waveforms, power spectra, and autocorrelations 
of pure tones an octave apart are completely uncorrelated, but when waveforms are half- wave 
rectified, as they are in the pro cess of auditory transduction in inner cochlear hair cells, their 
autocorrelations and power spectra have positive correlations.  Because this distortion comes 
 after cochlear filtering, it is pres ent in temporal codes, but not place codes. Thus, octave simi-
larity may be a consequence of the temporal neural codes that are used by the auditory system.

Octave stretch is another octave- related effect that may be explicable in terms of neural 
temporal firing patterns. The stretch is a small deviation from the true octave that is seen in 
octave matching experiments, usually larger for pure tones than complex tones, and fairly 
subtle, on the order of fractions of a semitone (Hartmann, 1993). Temporal models analyze 
small changes in interspike interval distributions (Ohgushi, 1983; McKinney, 1999; Ohgushi 
and Ago, 2005), whereas other models combine temporal and spectral  factors, such that changes 
in place- of- excitation can weakly influence pitch (Hartmann, 1993).

To summarize, interspike interval distributions have a recurrent structure that mirrors the 
circularity of chroma relations and the spiral structures of musical scales (Patterson, 1986). 
The recurrent structure of interspike intervals holds for all periodic sounds, i.e., for both pure 
and complex tones. When frequency is advanced a full octave, as in figure  5.10, half of 
the interval peaks become realigned. When frequency is advanced by a fifth, a third of the 
interval peaks are aligned. Thus, dif fer ent frequency ratios create characteristic alignments 
between the interval distributions of their respective tones. Neural discharge periodicities 
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related to common subharmonics provide a potential basis for chroma relations and percep-
tual similarity relations in tonal hierarchies.

Existence Region of Musical Tonality
For most listeners, musical tonality extends upward in frequency to roughly 4–5  kHz, a 
frequency limit that is broadly consistent with that of significant phase- locking in the cat 
auditory nerve ( Johnson, 1980). Efforts are underway to develop non- invasive methods for 
estimating this physiological limit in  humans (Verschooten, Robles, & Joris, 2015). If musical 
pitches and chroma relations are indeed ultimately based on interspike interval information, 
which depends on phase locking, then its limit directly explains the upper frequency limit 
of musical tonality. The limit might also explain why animals with predominantly high-
frequency hearing, such as birds, do not appear to perceive octave similarities (Russo, this 
volume; Patel, this volume). Explanations for the lower limit of tonality, roughly 20–25 Hz, 
are much less clear, but are usually based on the assumption that  there are durational limits 
to neural delays available for pro cessing pitch. The durational, temporal integration limits 
may vary with characteristic frequency region, with longer delays for lower frequencies and 
shorter ones for high frequencies (Oxenham, Bern stein, & Penagos, 2004).

Temporal Models for Consonance and Harmony

Pitch- based models of consonance rely on the degree to which dif fer ent periodicities coop-
erate (reinforce) or compete (interfere) with each other. The greater the harmonicity of the 
sound, the greater the degree to which the harmonics pres ent can subsumed into one har-
monic series, or equivalently, the periodicities pres ent can be subsumed into one fundamen-
tal pattern. The more unified the pitch and its under lying auditory repre sen ta tion, the fewer 
alternative pitches it implies, and the greater its harmonic stability (Lipps, 1905/1995).

Pitch unity is closely related to tonal fusion, the degree that the pitches of sounds fuse 
together, on which Carl Stumpf’s proto- Gestaltist theory was based (Stumpf, 1883/1890; 
Boring, 1942; Schneider, 1997). Our interpretation combines Stumpfian concepts of tonal 
fusion with pitch stability. In terms of harmonicity and pitch multiplicity, the more unified 
and stable the set of pitches evoked by a given stimulus, the more consonant it  will sound. 
The more the pitches that are evoked compete with each other, the less stable is the sound’s 
harmonic interpretation, and the more dissonant it  will sound. Stability,  here, means predic-
tive certainty—that is, the opposite of pitch ambiguity or harmonic entropy (Sethares, 2005, 
p. 371). For example, in vision a two- dimensional square is an extremely stable form  because 
it has but one dominant perceptual interpretation, whereas Necker cubes and other reversible 
figures are unstable  because they have multiple, competing perceptual interpretations that 
dominate with roughly equal probabilities.



Figure 5.9
Temporal model of pitch multiplicity: estimated consonance of dyads and pitch stability of chords. 
(a) Simulated normalized auditory nerve population- interval distribution (PID) response to C major triad 
(C4- E4- D4). (b) Selected subharmonic sieve templates for five selected periodicities that correspond to the 
three note- F0s plus two subharmonics. The full set contains all frequencies F0 = 30–1000 Hz, 1 Hz steps. 
Sieve tines had 0.2-ms widths. (c) Map of estimated pitch strengths (salience) of Pearson correlation 
coefficients (salience) of the PID with all sieves. The highest salience is found for the fundamental bass 
(arrow), the F0 of all of the notes comprising the chord, at 131 Hz, an octave below the root of the chord 
(C4 = 262 Hz). In addition, weaker pitches corresponding to the individual note F0s (C4, E4, D4) and their 
second and third harmonics (C5, E5, D5, C6) are predicted.
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Figure 5.10
Temporal model predictions for consonance. Top plots. Judgments of consonance for dyads of pure 
tones (left) and complex tones (right) by thirty- one Japa nese audio engineers. Pure tone data from figure 1 
of Kameoka and Kuriyagawa (1965); complex tone data from figure 7 of Kameoka and Kuriyagawa (1969), 
same as figure 5.4 above. Subjects  were instructed to judge the relative consonance/dissonance of tone 
dyads according to their “clearness” (sunda) vs. “turbidity” (nigotta). Bottom plots. Estimates of pitch sta-
bility from the temporal pitch multiplicity model. Pitch estimation was based on maximum correlation 
between subharmonic sieve and population- interval distribution (PID). Maximal salience was estimated 
using the mean density of intervals in PID bins in the subharmonic sieve for the estimated pitch.
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One of the advantages of a theory of consonance based on pitch stability is that it read-
ily  couples to  music cognition and music- theoretic concepts of pitch entropy/uncertainty, 
tonal centers, perceptual distance hierarchies, and harmonic tension/relaxation dynamics 
(Parncutt, 2011a, 2011b). Pattern- similarities between temporal repre sen ta tions similar to 
population- interval distributions when pro cessed  here using self- organizing Kohonen net-
works replicate neighborhood perceptual distance relations between notes, chords, and keys 
(Leman & Carreras, 1997; Leman, 2000; Krumhansl & Cuddy, 2008).

Pitch multiplicity The temporal model of pitch multiplicity presented in figure 5.11 pre-
dicts the consonance of musical intervals (figure 5.11d) and also estimates the relative pitch 

Figure 5.11
Predicted pitch stabilities of triadic chords. Maximal correlation saliences (estimated pitch stabilities) for 
triadic chords and their inversions from the temporal pitch multiplicity model. All triads had roots in 
the C4– C5 octave: I, II, III, IV, V, VI, VII, Dmaj, Emaj, Gmin, Cmin, Caug, Ssusp4, Csusp2, Caug, Gdim, Amaj and first & 
second inversions, Amin and first & second inversions. Notes consisted of harmonics 1–6, 70 dB SPL simu-
lated level, 317 CF positions, 631 ANFs; all other simulation par ameters as in D, which are associated 
with vari ous periodicities in the neural response. The subharmonic templates for several of  these note-
 F0 periodicities are shown below it (11B) such that sets of prominent PID peaks that correspond to the 
subharmonic patterns can be easily visualized by comparing the two plots (A, B). The map of estimated 
pitch strengths (saliences) is shown in (11C), which are the maximal correlation values of the PID with 
the set of subharmonic peaks associated with frequencies 25–800 Hz, ∆ f  = 1 Hz.
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stabilities of isolated triadic chords (figure 5.11e). Pitch multiplicity involves the ability of 
listeners to hear more than one pitch for a given stimulus. In addition to estimating the 
strongest, most likely pitch that  will be heard, in order to assess pitch multiplicity and stabil-
ity, pitch models also require means of estimating the relative strengths of multiple compet-
ing pitches.

Early interspike interval models (Meddis & Hewitt, 1991; Cariani & Delgutte, 1996a, 
1996b; Meddis & O’Mard, 1997) used the time interval (τ) associated with the first major 
individual peak in auditory nerve PIDs as an estimate of the period of one pitch that could 
be heard. However, the strategy of picking individual peaks in autocorrelation- like functions 
has well- known difficulties with octave confusions. It is also unreliable for pitch estimation 
when multiple musical notes and/or  human voices are presented concurrently.

Our pitch model (Tramo et al., 2001; Cariani, 2004a) evolved from dependence on one 
predominant interspike interval to a pattern of pitch- related intervals, i.e., a subharmonic 
series of peaks (n/f, n/F0) rather than a single peak (1/f, 1/F0). The model estimates the rela-
tive pattern- strengths of interspike interval patterns associated with dif fer ent stimulus period-
icities and pitches.

The temporal model is illustrated in figure 5.9 in response to a C- major triad. First, spike 
train responses of hundreds of simulated auditory nerve fibers to a stimulus are simulated 
(not shown).18 The all- order interspike interval distributions of  these fibers are weighted and 
summed to compile the estimated population- interval distribution (PID) of the  human audi-
tory nerve (figure 5.9a). The current version of the pitch estimation algorithm estimates the 
strengths of pos si ble pitches by computing the correlations between the simulated population- 
interval distribution (figure 5.9a) and an array of subharmonic patterns corresponding to 
dif fer ent pitch frequencies (figure 5.9b).

The subharmonic pattern with the maximum correlation is taken as the estimate of the 
most salient estimated pitch, i.e., the pitch most likely to be heard. Maximum pitch salience 
(strength), which is interpreted as a mea sure of pitch stability, is taken as the correlation 
value associated with the strongest pitch (correlation salience).

The specific example of a C- major triad (C4- E4- G4) is illustrated in figure 5.9. The population- 
interval distribution (figure 5.9a) that is produced shows a pattern of major and minor peaks. 
The pitch with the highest salience corresponds to C3 (131 Hz), which is an octave above the 
true fundamental of the chord C2 (65 Hz). The fundamental bass (basse fundamentale) is the 
fundamental of the note- F0s, which is the same as the fundamental of all of the harmonics 
pres ent in the chord. In music- theoretic terms, however, C2 and C3 are in the same chroma 
class and therefore are functionally identical, so the fundamental bass of the chord has the 
chroma class of C. The maximal salience of this dominant pitch produced by the chord is 
then taken as a mea sure of the pitch stability of the chord. The theory holds that all pitches 
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above a critical salience threshold should be audible, such that other weaker, pos si ble pitches 
are predicted for the F0s of the individual notes plus some of their lower harmonics.

Tonal consonance We have also simulated the experiments of Kameoka and Kuriyagawa 
(1965, 1969b). Maximal salience values for dif fer ent musical intervals formed from dyads of 
pure and complex tones are shown in figure 5.11.  These are the same stimuli with the same 
spectra as  were used by Kameoka and Kuriyagawa (1969b) for their psychophysical conso-
nance experiments (figure 5.4a). This study used an older pitch estimation algorithm based 
on estimating the pattern- strengths of F0- related interspike intervals using the same sub-
harmonic sieves as in figure (figure 5.9b). The resulting estimated saliences are called density 
saliences in figure 5.11  because they compute the respective densities of intervals in dif fer ent 
sets of PID bins. The estimates from the temporal pitch multiplicity model closely match the 
pattern of consonance judgments that  were observed (r = 0.8, 0.9), especially for the complex 
tone dyads (r = 0.9).  These estimates of pitch multiplicity covary with  those based on rough-
ness from beating harmonics (curves of predicted consonance in figures 5.4a and 5.6d). Thus, 
for most musical tonal stimuli, listeners would be expected to make approximately the same 
patterns of consonance judgments of consonance, irrespective of  whether they attend to 
roughness or pitch multiplicity cues.

 Bidelman and Heinz (2011) have carried out an extensive investigations of roughness, 
consonance, and harmony using a temporal model of this type and a pitch estimation algo-
rithm based on interval- densities. They have obtained results that are very similar to  those 
presented  here.19 They also studied the effects of simulated hearing impairment on percep-
tion of dyads and triads. Many of their general conclusions parallel  those drawn  here.

Pitch stability of chords The temporal model can be used to estimate the pitch stability of 
chords. Dif fer ent types of isolated chords that include major, minor, augmented, dimin-
ished, and suspended 2nd and 4th, as well as first and second inversions of major and minor 
chords, produce dif fer ent degrees of estimated pitch stability. Major triads and suspended 
4th chords  were estimated to be the most stable, followed by minor triads and suspended 
2nd chords, with the least stable chords being augmented and diminished triads.  These sta-
bility rankings are in qualitative agreement with listener ratings (see figure 5.4b; McDermott 
et al., 2010b) and with music- theoretic princi ples (Piston & DeVoto, 1987). The model pre-
dicts that chord inversions should have relatively subtle effects, if any, on pitch stability.

Although  these kinds of neural models can thus potentially  handle concurrent harmonic 
relations, in order to account for melodic, sequential tonal interactions, some sort of auditory 
short- term memory must be included.  Here internal repre sen ta tions of tonal contexts are 
built up through a per sis tent,  running pitch repre sen ta tion that interacts with new, incom-
ing neural activity patterns (e.g., Huron & Parncutt, 1993; Leman, 2000). The repre sen ta-
tion,  whether realized through per sis tent firing of feature- selective neurons or regenerated 
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temporal patterns of spikes, would need to persist on the order of a few seconds to inte-
grate temporal melodic, rhythmic, and timbral sequences of events.

Relation to virtual pitch models The temporal multiplicity model has strong correspon-
dences with Ernst Terhardt’s virtual pitch model and his theory of harmony (Terhardt, 
1974, 1984). His student Richard Parncutt has greatly extended the theory (Parncutt, 1989) 
and drawn out some of its general implications for harmony (pp. 68–70). Both time-  and 
frequency- domain subharmonic approaches are related to Rameau’s concept of the funda-
mental bass (Rameau 1772/1971). Although Terhardt’s model is couched in spectral terms, 
in the frequency domain, it is based on an analy sis of common subharmonics of the partials 
pres ent, the fundamental being the highest common subharmonic pres ent.

In effect, temporal pitch models based on all- order interspike intervals implement an 
autocorrelation- like repre sen ta tion that does exactly this, albeit in the time (delay) domain, 
using interspike intervals rather than acquired subharmonic templates. Like the Terhardt 
model, the population- interval distribution also reflects the strengths of the dif fer ent harmon-
ics. Summing interspike intervals carries out a superposition of subharmonics of harmonics 
that is weighted by their respective amplitudes. The more intense the harmonic, the more 
ANFs it drives, and the more interspike intervals pres ent that  will reflect its subharmonic 
pattern. In contrast to Terhardt’s model, the temporal model also covers musical pitches 
produced by groups of unresolved harmonics. Whereas Terhardt’s theory assumes that sub-
harmonic templates are self- organized through auditory experience, the subharmonics are 
already directly pres ent in the interspike intervals that are produced directly by phase- locked 
spiking in the auditory nerve (see also Bidelman & Heinz, 2011).

Historically, theories of harmony, such as Riemann’s (1905/2011) based on both harmonic 
and subharmonic relations (overtones and undertones) have been dismissed out of hand for 
several reasons related to acoustics, perception, and physiology. First, the subharmonics 
themselves are not thought to be pres ent in the acoustics. Through Fourier analy sis, one sees 
only frequency components (harmonics), but from autocorrelation one sees mainly peaks 
at time delays related to all of the subharmonics of  those components. Second, pitches cor-
responding to subharmonics are not usually explicity perceived. Lord Rayleigh (1894/1945) 
criticized periodicity- based theories of pitch, and implicitly with them theories of harmony 
based on the undertone series on the grounds that they would predict that we should hear all 
of the pitches associated with all of the individual subharmonics (which we  don’t). Fi nally, 
subharmonics  were not thought to be generated in the cochlea or in neuronal responses. 
Subharmonics only assume a neural real ity when one considers temporal, interspike interval 
codes. Misconceptions about the volley princi ple have also led some to incorrectly assert that 
temporal codes in the auditory system cannot represent periodicities above a few hundred 
Hz. But for almost a  century, it has been known that in the very first stage of auditory neural 
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pro cessing, the auditory nerve, temporal correlates of both overtones and undertones are 
richly and precisely represented in interspike interval patterns.

Neurocomputational mechanisms Although  there appears to be abundant evidence for the 
existence of spike timing information that could subserve musical tonality, the neurocompu-
tational mechanisms by which this informational might be utilized are much less clear. The 
temporal pitch multiplicity model is a neuropsychological model in that it predicts audi-
tory percepts based on neural responses, but it does not specify the neural mechanisms by 
which a central pitch analy sis could be carried out. The subharmonic correlation- based pitch 
estimation method outlined  here is thus intended as a means of quantifying the relative 
strengths of interspike interval patterns associated with dif fer ent pos si ble perceived pitches, 
and not as a literal neurocomputational mechanism.

 There are deep prob lems with all neurocomputational models for musical pitch that use 
specific fixed templates, as most listeners have relative, not absolute pitch. Aside from abso-
lute pitch, pitch perception does not on its face appear to be the result of a template- based 
recognition pro cess.

Equally problematic are theories that postulate a harmonic spectral pattern analy sis at 
the cortical level. Some theorists hold that all periodicity- related information, temporal-  and 
place- based, is converted to rate- place codes in the ascending auditory pathway by the time it 
reaches the cortical level (Plack, Barker, & Hall, 2014), and that an F0- spectral pattern analy-
sis could potentially be realized via analy sis of  those cortical rate- place repre sen ta tions (Fish-
man, Micheyl, & Steinschneider, 2013).  Others point to harmonic template neurons, most 
of which respond to combinations of high- frequency harmonics (Feng & Wang, 2017) above 
the frequency existence region for musical pitch.

However, if such a rate- based spectral pattern analyses  were carrried out at the cortical 
level, we should be able to hear strong F0- pitches from low- order resolved harmonics above 
4 kHz. According to such hypotheses, the missing fundamental F0- pitch at F0 = 1.5 kHz pro-
duced from harmonics 3–5 (4.5–6.0–7.5 kHz) should be  every bit as strong as its lower fre-
quency counterpart at F0 = 150 Hz produced from harmonics 3–5 (450–600–750 Hz). The 
latter produces a strong F0- pitch, whereas the former produces no F0- pitch.

At the cortical level, neurons have been found that respond somewhat selectively to 
periodicities associated with pure tones and combinations of resolved and/or unresolved 
harmonics (Bendor & Wang, 2005), although, like many neurons in auditory cortex, their 
firing rate responses also tend to be highly dependent on sound level (nonmonotonic, i.e., 
responding at only moderate sound levels). The rate responses are therefore unlike pitch per-
cepts, which remain stable and precise at high levels. Perhaps they are the right neurons, but 
information regarding pitch is embedded in some other aspect of their spike train outputs 
rather than through average spike rates.
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The response properties of  these F0- tuned neurons do not necessarily  favor spectral pat-
tern over temporal pro cessing, as  these responses might be the consequences of  either kinds 
of neural pro cessing at lower- levels of the auditory pathway. Neurons tuned to specific mod-
ulation frequencies of unresolved harmonics have been found in the brainstem and mid-
brain, and putative helical neural maps that form cylindrical tonotopic- periodotopic spaces 
have been proposed (Langner & Benson, 2015). However,  these responses cannot account for 
the stronger musical pitches produced by pure tones and harmonic complexes. Also, unlike 
pitch percepts,  these modulation tunings degrade at high sound levels.

We are still a long way from understanding how the auditory cortex works in terms of the 
details of neural repre sen ta tions and operations  because we do not yet have a firm grasp of 
the neural codes that are operant at that level.

Neural timing net theory would hold that the repre sen ta tion of a par tic u lar pitch or rhythm 
is itself a temporal pattern of spikes such that pitch perception does not involve matching 
to specific, fixed templates; pitches are primarily known only in relation to other pitches, 
via their neural signal- signal interactions (Cariani, 2002). For relative pitch comparisons, the 
interval patterns themselves can be compared to  those associated with other sounds, pro-
vided  there is some kind of short- term memory mechanism available that can temporarily 
hold temporal patterns. Analogous neural correlation operations could also be carried out by 
neural time- delay architectures (Licklider, 1959; Boomsliter & Creel, 1961), modulation detec-
tors and/or neural autocorrelators (Langner & Benson, 2015), recurrent timing nets (Cariani, 
2002), or nonlinear oscillatory networks (Large, Kim, Bharucha, & Krumhansl, 2016).

Neural temporal discharge patterns related to periodicities of fundamentals, harmonics, 
and subharmonics have been observed in brainstem frequency- following responses, and the 
model of pitch stability based on maximal salience seems to hold  there (Bidelman & Krish-
nan, 2009; Lee, Skoe, Kraus, & Ashley, 2014). Individual preferences for tones with higher 
harmonicity also appear to be reflected in temporal response patterns at the level of the brain-
stem (Bones, Hopkins, Krishnan, & Plack, 2014).

The main difficulty for temporal theories currently involves a lack of understanding of 
how fine timing information that is abundant and available to midbrain auditory stations 
would be utilized at thalamic and cortical levels. F0- related spike timing information in the 
auditory cortex is evident only up to a few hundred Hz (Cariani, 1999; Cariani & Micheyl, 2012; 
Fishman, Micheyl, & Steinschneider, 2013), which is insufficient for temporal coding of the 
full gamut of musical pitches.

The psychophysics strongly suggest that this temporal information from the periphery is 
utilized, but the central neural codes and computations to do it remain obscure (Cariani & 
Micheyl, 2012).  There are also tantalizingly elegant and power ful time- domain scene analy sis, 
discrimination, scaling, and recognition operations that could be carried out if the temporal 
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information  were available in some form (Cariani, 2001a; Cariani, 2002; Cariani, 2004b; 
Cariani, 2015). Despite substantial advances in understanding cortical repre sen ta tions of pitch 
and harmonic relations ( Janata et al., 2002; Warren, Uppenkamp, Patterson, & Griffiths, 2003; 
Bendor & Wang, 2005; Hyde, Peretz, & Zatorre, 2008; Bizley, Walker, King, & Schnupp, 2010; 
Fishman et al., 2013; Norman- Haignere, Kanwisher, & McDermott, 2013), the precise nature 
of  those codes and the coding transformations that must exist in the ascending auditory 
pathway remain enigmas.

Conclusions

Major properties of musical scales and tunings and their relations to the structure of pitch 
perception and under lying auditory neural repre sen ta tions have been considered and 
include:

1. The octave- repeating linear structure of musical scales replicates the two dimensional, 
helical structure of pitch space, with pitch height as its axial dimension, and pitch chroma 
as its circular dimension.

2. Musical intervals are relative, frequency- ratio relations to the tonic.

3. Musical tonality (octave similarity, musical interval discriminations, tonal hierarchi-
cal similarities, and melodic invariance  under transposition) depends on pitch chroma 
relations.

4. The pitch ranges of scales and musical instruments reflect the periodicity and frequency 
limits of musical tonality, ~25–4,000 Hz.

5. Most scales consist of discrete sets of five to twenty- four notes, enabling pitches to be rep-
licated and for musicians to play the same and/or dif fer ent compatible pitches together.

6. Most of the world’s scales incorporate notes with musical interval frequency- ratios to the 
tonic at or near the Pythagorean consonances (1:1, 2:1, 3:2, 4:3, 5:3, 5:4, 6:5).

7. Consonance can have a variety of meanings related to perceptions of or preferences for par-
tic u lar combinations of tones. Two aspects of consonance involve perceived roughness, 
which arises from beating harmonics, and perceived inharmonicity, which arises from 
multiple competing, clashing periodicities that are not harmonically related. Some listeners 
attend to and prefer sound combinations that are less rough, whereas  others prefer  those 
that have higher harmonicity.

8. Just intonation tuning uses ratios of integers. Pythagorean tuning is based on fifths and 
octaves. Equal temperament (ET) divides the octave into equal frequency- ratio steps. ET 
regularizes inter- note frequency ratios to eliminate subtle differences in tonal colorations 
of dif fer ent keys, thereby enabling  free modulation between keys.
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 9. Tuning systems for instruments with harmonic spectra provide close approximations 
to  these consonances. Just tuning provides exact approximations, whereas twelve- tone, 
equal temperament (12- TET) provides approximations close enough (< 1  percent) to most 
of  these consonances such that perceived roughness and inharmonicity are minimized, 
and not noticeable for most listeners in common musical situations. Equally tempered 
pentatonic (5- TET), heptatonic (7- TET), and chromatic (12- TET) scales give the best 
approximations, with chromatic being closest.

 10. Musical pieces that use dif fer ent scales or modes produce dif fer ent tonal colorations  because 
they contain dif fer ent sets of musical intervals that have dif fer ent chroma- relations to the 
tonic that in turn make dif fer ent sets of tonal hierarchical relations pos si ble.

 11. Whereas best pitch discriminations are on the order of 0.1   percent in frequency, best 
discriminations of transposed musical intervals are much coarser, on the order of a quar-
tertone (3  percent). In both categories musicians tend to make finer discriminations than 
untrained listeners. Musical interval perception is highly categorical.

 12. Whereas the consonance of concurrent sounds is most critical for tuning systems, 
choice of musical intervals and their relations to tonal hierarchies is more impor tant for 
scales.

 13. Many basic aspects of scales and tunings may be ultimately due to the structure of tem-
poral, interspike interval neural codes for pitch in the early auditory system. Interspike 
interval models of pitch account for musical note pitches. Pitch chroma relations may 
be mediated by temporal codes.

 14. Octave similarity and the circular organ ization of pitch chroma may be due to the circu-
lar, repeating structure of neural interspike interval distributions in the auditory system. 
Tones separated by simpler frequency ratios share higher fractions of interspike interval 
peaks.

 15. The upper frequency limit of spike timing information (4–5 kHz) likely determines the 
upper frequency limit for musical tonality.

 16. Temporal pitch multiplicity models and virtual pitch models produce estimates of tonal 
consonance similar to  those of roughness models; both successfully predict the conso-
nance of Pythagorean ratios.

 17. Temporal pitch multiplicity and virtual pitch models  couple to Rameau’s theory of har-
mony, which is based on relative strength of the fundamental bass.

 18. Temporal pitch multiplicity and virtual pitch models estimate the relative tonal stabili-
ties of triads (major and suspended 2nd > minor and suspended 4th > augmented and 
diminished chords). Virtual pitch models may explain other aspects of tonal hierarchies 
as well.
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Notes

1.  For example, Kurt Schwitter’s Ursonate (1922–1932).

2.  Belgian musicologist François- Joseph Fétis, quoted in Hyer, 1999.

3.  Perceptual resolvability, as used  here, refers to the ability to hear out and accurately matches the pitch 
of an individual harmonic in a harmonic complex to that of a pure tone of adjustable frequency 
(Plomp, 1976).  There are a host of other theoretical, psychophysically  derived mea sures of resolvability 
in the auditory lit er a ture that are related to frequency selectivity, critical bandwidths, and auditory filter 
shapes (Moore, 2013; Zwicker & Fastl, 1999).

4.  Burns (1999) hypothesizes that listeners may be able to extend the range of usable temporal information 
through learning (experience). For example, most listeners hear only binaural beats of pairs of pure tones 
up to ~1,200 Hz, but with training, this limit can be pushed upward more than an octave (Wever, 1948).

5.  Frequency difference limens for identification of pitch direction with small changes of frequency 
are generally comparable to  those for pitch discrimination, but  there is considerable individual vari-
ability, with some listeners (counterintuitively) able to identify pitch direction changes at 50% smaller 
frequency differences than they require to detect a pitch change, and with  others  going the other way 
(Semal & Demany, et al., 2006). Oddly, some amusics can sing with better intonation than they can 
consciously perceive (Peretz, 2016).

6.  Melodic invariance  under transposition is analogous to the invariance of rhythmic patterns  under 
changes in tempo, albeit at dif fer ent time scales (Boomsliter et al., 1961). Both transformations can be 
achieved though time scale dilation/compression, which preserves temporal ratio relations between F0 
pitch periods in melody and between inter- event intervals in rhythm.  These auditory temporal pattern 
invariances are analogous to visual spatial pattern magnification- invariance.

7.  Similar ambiguous situations arise for pitch and consonance when individual listeners attend to 
dif fer ent aspects of sound. In musical contexts, when asked to make judgements about “pitch,” listen-
ers attend to F0- pitches, but if directions are ambiguous, listeners may instead attend to changes in 
spectral center- of- gravity instead. Musically more experienced listeners tend to focus on F0- pitch differ-
ences related to periodicity, whereas less experienced listeners tend to focus on pitch height differences 
related to spectrum (Shepard, 1982).
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8.  Although consonance has always encompassed interactions of both sequential and concurrent notes, 
Tenney (1988) argues that the concept has under gone at least five historical semantic transitions: early 
conceptions of consonance focused mainly on sequential pitch relations rather than properties of simul-
taneous notes, such that the association of consonance with roughness is a comparatively modern idea.

9.  One should not conflate perceptual distinctions and listener preferences. For example, listeners may 
be able to distinguish consonant from dissonant chords, yet prefer neither (McDermott et al., 2016). 
Preferences imply discriminability, but not vice- versa. In general, basic discriminations between musical 
events are more likely to be determined by auditory constraints, whereas preferences are much more 
open to influence from acquired learned associations and rewarded cultural norms. On the other hand, 
many discriminative auditory acuities can be improved by musical training, and some preferences may 
be innate, near- universals (e.g., sweet vs.  bitter tastants, low vs. high frequency tones).

10.  See von Helmholtz (1885/1954, pp. 280–284), Forster (2010), and Midya (2015) for more detailed 
analyses.

11.  Note that 1 cent is ~1/100th of a semitone, and 15 cents is roughly a sixth of a semitone or about 
1  percent in frequency.

12.  Global temporal models can be contrasted with spectral pattern models that recognize patterns 
of resolved harmonics in spectral repre sen ta tions (Goldstein, 1973; Wightman, 1973; Terhardt, 1974; 
Cohen, Grossberg, & Wyse, 1994).  Those spectral pattern models that successfully predict pitch from 
realistic neural responses to acoustic stimuli (Srulovicz & Goldstein, 1983) invariably rely on spike 
timing (interspike interval) information to first form a putative neural central spectrum repre sen ta tion 
that is then harmonically analyzed to estimate pitch. A major shortcoming of spectral pattern theories 
is that they cannot account for the (musical) F0- pitches that are produced by unresolved, higher har-
monics. Pitch theories that incorporate spectral pattern analy sis therefore require a second, temporal 
mechanism to account for the gamut of musical pitches.

13.  The two- mechanism F0- pitch hypothesis would predict that  these amusics have intact periodicity 
analyzers for unresolved harmonics, but an impaired spectral pattern analy sis mechanism for resolved 
ones. A unified temporal hypothesis would predict that amusics lack the additive or multiplicative 
interactions between multiple frequency regions needed for integration of individual resolved harmon-
ics into the central population- interval repre sen ta tion. Whereas unresolved harmonics create promi-
nent F0- related spike periodicities in the auditory nerve, resolved harmonics produce patterns related 
to individual harmonics, such that F0 periodicities only become dominant  after interspike intervals 
from dif fer ent tonotopic regions are combined somewhere in the auditory pathway. A dearth of cross- 
frequency connections might therefore cause a deficit in perception of the F0- pitch of resolved, but 
not unresolved, harmonics. Without  those interactions and integrations, complex tones with resolved 
harmonics would be expected to produce unfused, clashing  jumbles of pitches of individual harmonics 
that might cause even individual notes to sound dissonant.

14.  “Agreeable consonances are pairs of tones which strike the ear with a certain regularity; this regu-
larity consists in the fact that the pulses so delivered by the two tones, in the same interval of time, 
 shall be commensurable in number, so as not to keep the ear drum in perpetual torment, bending in 
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two dif fer ent directions in order to yield to the ever- discordant impulses” (Galileo, quoted in Plomp & 
Levelt, 1965, p. 549).

15.  “The octave relation, the musical third, fourth, and other consonant intervals are understandable 
on essentially the same basis. When the frequencies of two sounds,  either sinusoidal or complex, 
bear to each other the ratio of two small integers, their autocorrelation functions have common peaks” 
(Licklider, 1951, p. 131).

16.  “If cadence of discharges  were relevant to tone perception, one could infer that the less regular the 
cadence, the harsher and or rougher or more dissonant the sensory experience. If this  were true, the 
neural data would predict a relation between consonance and frequency ratio  because, in response to 
a complex periodic sound, the smaller the numbers in the frequency ratio the more regular is the dis-
charge cadence. Therefore, our neural data can be taken to support a frequency- ratio theory of conso-
nance” (Rose, 1980, p. 31).

17.  For pure tones of frequency f, PIDs approximate half- wave rectified cosine functions, i.e., the 
maximum of 0 or cos (2πf t) at each time point t.

18.  The simulations used the public Zilaney, Bruce, and Carney (2014) model of auditory nerve fibers. 
Except where noted, similar par ameters  were used for all of the auditory nerve simulations discussed 
 here (figures 5.8–5.11). For the plots of figure 5.8 300 ANFs  were stimulated at 75 dB SPL simulated 
level, whereas for the simulations of dyads (figure 5.10) and triads (figure 5.11), 320 CF positions with 
three spontaneous rates per CF position  were used (640 ANFs total). Specific model par ameters: species 
(2), i.e., Shera Q  human auditory filters, normal ohc and ihc function (1), noiseType (1),  human distri-
bution of ANF CFs, distribution of spontaneous rate classes (20% low sr, 30% medium sr, 50% high sr). 
PIDs  were normalized by dividing by the PID mean. Other details concerning the pitch algorithm can 
be found in Cariani (2004) and Bidelman and Heinz (2011).

19.  I developed the method of using dense (ΔF0 = 1 Hz) interspike interval sieves in the late 1990s (Cariani, 
2004a) to systematically quantify the pattern- strengths associated with all pos si ble F0- pitches within the 
tonality existence region. This method used the average density of interspike intervals in the pattern (in 
sieve bins) to estimate pitch saliences. Bidelman and Heinz (2009) subsequently used this method to 
predict consonance judgments, and obtained results similar to mine. A few years ago I developed the 
newer method of computing correlations to subharmonic delay patterns that eliminate pervasive octave 
confusions that hamper the interval density method and also obviate the need for weighting shorter 
autocorrelation time lags. Aside from octave errors, the two methods produce comparable results.
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